• Title/Summary/Keyword: Friction pad

Search Result 235, Processing Time 0.023 seconds

Mechanical Characteristics of Automobile Brake Pads (자동차 브레이크 패드의 기계적 특성 연구)

  • Shin, Jaeho;Kim, Kyungjin;Kang, Woojong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.7 no.3
    • /
    • pp.19-24
    • /
    • 2015
  • Brake pads are a component of disc brake system of automobile and consist of steel backing plates and friction material facing the disk brake rotor. Due to the repeated sliding forces and torque in vehicle braking, friction performance of brake pads are ensured. Futhermore, the brake pad is one of major tuning components in aftermarket, mechanical characteristics of the brake pad are necessary to evaluate for establishing the certification standards of tuning components. This study had performed the five specimen tests for friction coefficients and wear loss rates according to the SAE test specification. Using the instrumented indentation method, yield strength and tensile strength were measured. Friction coefficients, 0.386 - 0.489, and wear loss rates, 1.0% - 3.7% are obtained. The range of yield strength and tensile strength are 21.4 MPa - 105.3 MPa and 39.5 MPa - 176.4 MPa respectively.

Effects of the Phenolic Resins in the Automotive Friction Materials on Friction Characteristics (자동차용 마찰재에 사5되는 폐놀수지의 종류에 따른 마찰특성의 영향에 관한 연구)

  • Kim, Seong-Jin;Hong, Young-Suk;Jang, Ho
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.92-100
    • /
    • 1999
  • Friction characteristics of automotive friction materials according to the types of phenolic resin were investigated by using a pad-on-disk type friction tester. Four different simplified friction materials bound with Bakelite$^{TM}$ and Xylok$^{TM}$ phenolic resin were studied in this work. Two different modes of drag test(constant initial temperature test and constant interval test) were employed to analyze the effects of the binders on friction characteristics. Friction materials containing modified Xylok$^{TM}$ resin showed good heat resistance and friction stability. The results also showed that aramid fiber played important roles in improving friction stability and weard wear

  • PDF

Study on the Lubricant Flow Behaviors in the Wet Clutch Pack System of Dual Clutch Transmission (습식 DCT(Dual Clutch Transmission) 클러치 팩 내부에서의 체결 동작에 따른 변속기유 거동 연구)

  • Kim, WooJung;Lee, SangHo;Jang, Siyoul
    • Tribology and Lubricants
    • /
    • v.33 no.3
    • /
    • pp.85-91
    • /
    • 2017
  • This work studies the flow behaviors in the gap between the friction pad and separator in wet-clutch systems. The fluid volume of the lubricant is modeled using the entire system of wet-clutch pack of a dual clutch transmission that has larger outer radius of odd gear shifts and smaller inner radius of even gear shifts. Flow behaviors in the gap of the clutch pad are computed using the gear shift modes that consider the real relative velocities between the friction pad and separator. Flow behaviors in the gap of the disengaged clutch pad are mainly investigated for the wet-clutch system, whereas the engaged clutch pad is modeled with no fluid rate through the contacting surfaces. The developed hydrodynamic fluid pressures and velocity fields in the clutch pad gap are computed to obtain the relevant information for managing flow rates in wet-clutch packs under dual operating conditions during gear shifts. These hydrodynamic pressures and velocity fields are compared on the basis of each gear level and gap location, which is necessary to determine the effects of groove patterns on the friction pad. Shear stresses in the gap locations are also computed on the basis of the gear level for the inner and outer clutch pads. The computed results are compared and used for the design of cooling capacity against frictional heat generation in wet-clutch pack systems.

Computer Simulations on the Thermal Behaviors of a Friction Pad in High-Speed Train Disk Brakes

  • Kim, Chung Kyun
    • KSTLE International Journal
    • /
    • v.1 no.2
    • /
    • pp.95-100
    • /
    • 2000
  • The thermal behaviors of disk-pad braking models has been analyzed for a high-speed train brake system using the coupled thermal-mechanical analysis technique. The temperature distribution, thermal distortion, and contact stress in the disk-pads contact model have been investigated as functions of the convective heat transfer rate. The FEM results indicate that multiple spot type pads show more stabilized thermal characteristics compared with those of the flat type pads for the increased convective heat transfer rate. The maximum contact stress for a friction pad loaded against a rubbing disk was occurred on the edge of the pad at the disk-pad interface.

  • PDF

CMP Process Monitoring through Friction Force Measurement (마찰력 측정을 통한 CMP 공정의 모니터링)

  • 정해도;박범영;이현섭;김형재;서헌덕
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.622-625
    • /
    • 2004
  • The CMP monitoring system was newly developed by the aid of friction force measurement, resulting from installation of piezoelectric quartz sensor on R&D polisher. The correlation between friction and CMP results was investigated in terms of tribological aspects by using the monitoring system. Various friction signals were monitored and analyzed by the change of experimental conditions such as pressure, velocity, pad and slurry. First of all, the lubrication regimes were classified with Sommerfeld Number through measuring coefficient of friction in ILD CMP. And then, the removal mechanism of abrasives could be understood through the correlation with removal rate and coefficient of friction. Especially, the amount of material removal per unit sliding distance is directly proportional to the friction force. The uniformity of CMP performances was also deteriorated as coefficient of friction increased.

  • PDF

A Study on the Friction Characteristics of Automotive Brake Pads Reinforced with Carbon Fibers (탄소 섬유를 강화재로 사용한 자동차용 마찰재의 마찰특성에 관한 연구)

  • Jung, K. Y.;Jang, Ho
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.330-336
    • /
    • 1998
  • The friction and wear characteristics of automotive friction materials reinforced with carbon fibers were studied using a direct drive brake dynamometer. Two types of model friction materials, a low-metallic and an NAO type, were prepared and each of the materials was modified by substituting 5 vol% of carbon fibers with other reinforcing fiber used in the model formulations. Drag tests were carried out to investigate the friction properties of these materials at various braking conditions. Results showed that the modified friction materials were improved in the friction stability and the wear resistance.

  • PDF

Steady-State Performances Analysis of a Tilting-Pad Gas Bearing (틸팅 패드 기체베어링의 정상상태 성능해석)

  • Kwon, Tae-Kyu
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.2 s.15
    • /
    • pp.43-49
    • /
    • 2002
  • In this paper, the steady-state performances analysis of a tilting pad gas bearing(TPGB) we analyzed by using finite element method for compressible Reynolds' equation. TPGB is used in a high-expansion-ratio expander running at a speed of 230,000 rpm. In order to solve the nonlinear finite element equations, the Newton-Raphson method is applied. The variations of the loading capacity, friction force and tilting angle of a single pad v.s. eccentricity direction of eccentricity and bearing number are investigated. The condition for the equilibrium of a pad, which is important for safe working of the bearing, is stated. The performances of the three pad bearing such as loading capacity, friction moment are predicted.

Influence of External Air Velocity for Tribological Characteristics between Sintered Friction Material and Disk (외부 공기속도 변화에 따른 소결마찰재와 디스크간 마찰특성)

  • Lee, Jong Seong;Lee, Hi Sung
    • Tribology and Lubricants
    • /
    • v.29 no.1
    • /
    • pp.19-26
    • /
    • 2013
  • Cu-matrix sintered brake pads and low-alloy heat-resistant steel are commonly applied to basic brake systems in high-energy moving machines. In this research, we analyzed the tribological characteristics to determine the influence of the air velocity between the disk and pad. At a low brake pressure with airflow, the friction stability was decreased as a result of the lack of tribofilm formation at the disk surface. However, there were no significant changes in the friction coefficient under any of the test conditions. The wear rates of the friction materials were decreased with an increase in the airflow velocity. As a result, the airflow velocity influenced the friction stability, as well as the wear rate of the friction materials and disk, but not the friction coefficient.

Friction and Wear Properties of High Manganese Steel in Brake Friction Material for Passenger Cars (자동차용 브레이크 마찰재에서 고망간강의 마찰 및 마모특성)

  • Jung, Kwangki;Lee, Sang Woo;Kwon, Sungwook;Song, Myungsuk
    • Tribology and Lubricants
    • /
    • v.36 no.2
    • /
    • pp.88-95
    • /
    • 2020
  • In this study, we investigate the mechanical properties of high manganese steel, and the friction and wear characteristics of brake friction material containing this steel, for passenger car application, with the aim of replacing copper and copper alloys whose usage is expected to be restricted in the future. These steels are prepared using a vacuum induction melting furnace to produce binary and ternary alloys. The hardness and tensile strength of the high manganese steel decrease and the elongation increases with increase in manganese content. This material exhibits high values of hardness, tensile strength, and elongation; these properties are similar to those of 7-3 brass used in conventional friction materials. We fabricate high manganese steel fibers to prepare test pad specimens, and evaluate the friction and wear characteristics by simulating various braking conditions using a 1/5 scale dynamometer. The brake pad material is found to have excellent friction stability in comparison with conventional friction materials that use 7-3 brass fibers; particularly, the friction stability at high temperature is significantly improved. Additionally, we evaluate the wear using a wear test method that simulates the braking conditions in Europe. It is found that the amount of wear of the brake pad is the same as that in the case of the conventional friction material, and that the amount of wear of the cast iron disc is reduced by approximately 10. The high manganese steel is expected to be useful in the development of eco-friendly, copper-free friction material.

Friction-Induced Vibration of Brake Lining Pad (브레이크 라이닝 패드의 마찰 진동)

  • Choi, Y.S.;Jung, S.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.5
    • /
    • pp.93-100
    • /
    • 1994
  • Friction-induced vibration characteristics of automotive brake lining pad are investigated on the basis of experimental observations from a pin-on-disk type friction-induced vibration experimental apparatus. The measured responses of the experimental apparatus show limit cycles of quasi-harmonics type and beat phenomena due to the velocity dependence of friction force. To deduce the friction coefficient vs. relative velocity Lienard method is adopted with least square fit. It shows Scurve which characterizes a quasi-harmonic vibration. The calculation of amplitudes and friquencies of the limit cycles is done using slowly changing phase and amplitude method. The theoretical and numerical results show fairly good agreements with those of experiments.

  • PDF