• 제목/요약/키워드: Friction force microscopy

검색결과 69건 처리시간 0.027초

Nano-Wear and Friction of Magnetic Recording Hard Disk by Contact Start/Stop Test

  • Kim, Woo Seok;Hwang, Pyung;Kim, Jang-Kyo
    • KSTLE International Journal
    • /
    • 제1권1호
    • /
    • pp.12-20
    • /
    • 2000
  • Nano-wear and friction of carbon overcoated laser-textured and mechanically-textured computer hard disk were characterised after contact start/stop (CSS) wear test. Various analytical and mechanical testing techniques were employed to study the changes in topography, roughness, chemical elements, mechanical properties and friction characteristics of the coating arising from the contact start/stop wear test These techniques include: the atomic force microscopy (AFM), the continuous nano-indentation test, the nano-scratch test, the time-of-flight secondary ion mass spectroscopy (TOF-SIMS) and the auger electron spectroscopy (AES). It was shown that the surface roughness of the laser-textured (LT) bump and mechanically textured (MT) Bone was reduced approximately am and 7nm, respectively, after the CSS wear test. The elastic modulus and hardness values increased after the CSS test, indicating straining hardening of the top coating layer, A critical load was also identified fer adhesion failure between the magnetic layer and the Ni-P layer, The TOF-SIMS analysis also revealed some reduction in the intensity of C and $C_2$$F_59$, confirming the wear of lubricant elements on the coating surface.

  • PDF

브라켓과 탄선 간의 마찰 전후 표면 변화 분석 - 원자현미경을 이용한 예비연구 (Changes in surface roughness of bracket and wire after experimental sliding - preliminary study using an atomic force microscopy)

  • 이태희;박기호;전지윤;김수정;박헌국;박영국
    • 대한치과교정학회지
    • /
    • 제40권3호
    • /
    • pp.156-166
    • /
    • 2010
  • 브라켓과 호선 간에 발생하는 마찰은 치아 이동의 효율에 상당한 영향을 미친다. 마찰력에 기여하는 요소 중 특히 브라켓과 호선의 표면조도는 중요한 요소이다. 본 연구는 브라켓과 탄선을 실험적으로 마찰시킨 후, 원자현미경 (atomic force microscope, AFM)을 사용하여 브라켓 슬롯과 교정용 탄선의 표면 조도 변화를 정성적, 정량적으로 측정하고 비교 평가하여 브라켓과 호선 간의 마찰이 각각의 표면 변화에 미치는 영향을 규명하고자 시행되었다. 스테인리스 스틸 브라켓과 세라믹 브라켓에 각각 스테인리스 스틸 탄선과 TMA 탄선을 실험적으로 활주마찰시킨 후 각각을 원자현미경을 이용하여 표면을 관찰하였다. 실험결과 브라켓보다는 교정용 탄선에서 활주마찰 후에 더 많은 표면 변화가 나타났다. 또한 활주마찰 후에 스테인리스 스틸 브라켓은 표면 조도의 유의한 변화가 없었으나 세라믹 브라켓은 표면 조도가 감소하였다. 그리고 교정용 탄선은 모두 활주마찰 후에 표면 조도가 증가하였으며 이러한 표면 변화는 스테인리스 스틸 브라켓보다 세라믹 브라켓과의 활주마찰 후에 더 큰 것으로 관찰되었다. 본 실험으로 원자현미경은 브라켓 슬롯과 탄선의 표면 조도를 정량적으로 측정하는 데에 유용한 수단임을 알 수 있었다.

나노스케일과 마이크로스케일 사이에서 Mica 의 점착 및 마찰 거동 (Adhesive and frictional behaviors of Mica between nanoscale and microscale)

  • 최덕현;황운봉
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1151-1154
    • /
    • 2005
  • The size effects for adhesive and frictional characteristics were studied. The specimen was Mica and the AFM tips were SiO2. The radii of SiO2 tip were 280, 380, 930, and 2230 nm on which tribological tests had never been performed. It was found that the adhesive forces and the frictional coefficients increased non-linearly with tip radius. Compared with previous studies at nanoscale and microscale, the results showed behaviors bridging each previous result. It could be said that these results were clues to explain the material behaviors between nanoscale and microscale both in adhesion and friction.

  • PDF

미끄럼운동 시 TiN코팅에 형성되는 산화막이 마찰 및 마멸 특성에 미치는 영향

  • 조정우;임정순;우상규;이영제
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 제35회 춘계학술대회
    • /
    • pp.310-316
    • /
    • 2002
  • In this study, the effects of oxide layer formed on the wear tracks of TiN coated silicon wafer on friction and wear characteristics were investigated. Silicon wafer was used for the substrate of coated disk specimens, which were prepared by depositing TiN coating with $1{\mu}m$ in coating thickness. AISI 52100 steel ball was used for the counterpart. The tests were performed both in air for forming oxide layer on the wear track and in nitrogen to avoid oxidation. This paper reports characterization of the oxide layer effects on friction and wear characteristics using X-ray diffraction (XRD). Auger electron spectroscopy (AES), scanning electron microscopy (SEM) and sliding tests.

  • PDF

Estimation of Surface Forces in Micro Rough Surface Contacts

  • Kim, Doo-In;Ahn, Hyo-Sok;Choi, Dong-Hoon
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.63-64
    • /
    • 2002
  • In a micro-scale contact, surface forces such as capillary force and van der Waals Interaction significantly Influence the contact between asperities of rough surfaces. Little is, however, known about the variation of these surface forces as a function of chemical property of the surface (hydrophilicity), relative humidity and deformation of asperities In the real area of contact. A better understanding of these surface forces is of great necessity in order to find an optimal solution for reducing friction and adhesion of micro surfaces. We proposed an effective method to analyze capillary and van der Waals forces In nano-scale contact. In this method, Winklerian foundation model was employed to analyze the contact of rough surfaces that were obtained from atomic force microscopy (AFM) height Images. Self-mated contact of diamond-like-carbon (DLC) coatings was analyzed, as an example, by the proposed model. It was shown that the capillary force was significantly influenced by relative humidify and wet angle of the DLC surface. The deformation of asperities to a critical magnitude by external loading led to a considerable increase of both capillary and van der Waals forces.

  • PDF

Nanoprobing Charge Transport Properties of Strained and Indented Topological Insulator

  • Hwang, Jin Heui;Kwon, Sangku;Park, Joonbum;Lee, Jhinhwan;Kim, Jun Sung;Lyeo, Ho-Ki;Park, Jeong Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.128.1-128.1
    • /
    • 2013
  • We investigated the correlation between electrical transport and mechanical stress in $Bi_2Te_2Se$ by using a conductive probe atomic force microscopy in an ultra-high vacuum environment. Uniform distribution of measured friction and current were observed over a single quintuple layer terrace, which is an indication of the uniform chemical composition of the surface. By measuring the charge transport of $Bi_2Te_2Se$ surface as a function of the load applied by a tip to the sample, we found that the current density varies with applied load. The variation of current density was explained in light of the combined effect of the changes in the in-plane conductance and spin-orbit coupling that were theoretically predicted. We suppose that the local density of states is modified by tip-induced strain, but topological phase still remains. We exposed a clean topological insulator surface by tip-induced indentation. The surface conductance on the indented $Bi_2Te_2Se$ surface was studied, and the role of surface oxide on the surface conductance is discussed.

  • PDF

거친 표면간의 미세 접촉에서의 표면력 해석 (Analysis of Surface Forces in Micro Contacts between Rough Surfaces)

  • 김두인;안효석;최동훈
    • 대한기계학회논문집A
    • /
    • 제26권10호
    • /
    • pp.2180-2186
    • /
    • 2002
  • In a micro-scale contact, capillary force and van der Waals interaction significantly influence the contact between asperities of rough surfaces. Little is, however, known about the variation of these surface forces as a function of chemical property of the surface (wet angle), relative humidity and deformation of asperities in the real area of contact. A better understanding of these surface forces is of great necessity in order to find a solution for reducing friction and adhesion of micro surfaces. The objective of this study is to investigate the surface forces in micro-scale rough surface contact. We proposed an effective method to analyze capillary and van der Waals forces in micro-scale contact. In this method, Winkler spring model was employed to analyze the contact of rough surfaces that were obtained from atomic force microscopy (AFM) height images. Self-mated contact of DLC(diamond like carbon) coatings was analyzed, as an example, by the proposed model. It was shown that the capillary force was significantly influenced by relative humidity and wet angle of the DLC surface. The deformation of asperities to a critical magnitude by external loading led to a considerable increase of both capillary and van der Waals forces.

Electroforming을 이용하여 제조한 Ni 기판의 기계적 특성 및 내마모 거동 분석 (Characterizations of the Mechanical Properties and Wear Behavior of Ni Plate Fabricated by the Electroforming Process)

  • 이승이;장석헌;이창민;최준혁;주진호;임준형;정승부;송건
    • 한국재료학회지
    • /
    • 제17권10호
    • /
    • pp.538-543
    • /
    • 2007
  • We fabricated the Ni plate by electroforming process and evaluated the microstructure, mechanical properties and wear behavior of the Ni plate. Specifically, the effects of addition of wetting agents, SF 1 and SF 2 solutions, on the microstructure and properties were investigated. The microstructure and surface morphology were characterized by transmission electron microscopy (TEM) and atomic force microscopy (AFM), respectively, and friction coefficient was measured by the ball-on-disk method. We found that the microstructure and mechanical properties of Ni plate were changed with kind and amount of wetting agents used. The hardness and tensile strength of Ni plate formed without wetting agents was 228 Hv and 660.7 MPa, respectively, whiled when wetting agent was added, those were improved to be 739 Hv and 1286.3 MPa. These improvements were probably due to the finer grain size and less crystallization of Ni. In addition, when both wetting agents were added, the friction coefficient was reduced from 0.73 to 0.67 which is partially caused by the improved hardness and smooth surface.

크로마이징 처리 된 철계 소결 부품의 내식성 및 저 마찰특성 (Corrosion Resistance and Low Friction Property of Sintered Steel Parts via Chromizing Treatment)

  • 김상권;박용진;여국현;이재훈
    • 대한금속재료학회지
    • /
    • 제50권11호
    • /
    • pp.809-815
    • /
    • 2012
  • Recently, as the interest in improving energy efficiency has grown, the demand for vehicle and machine parts that are resistant in high temperature corrosive conditions and abrasive environments has increased. Pack chromizing treatment of sintered steels is a profitable method that satisfies both corrosion resistance and low friction properties. Since austenitic stainless steels have good corrosion resistance but low mechanical hardness, if they are replaced by sintered steel parts with pack chromizing treatment, all the desirable properties such as low price, easy molding, high hardness, low frictional coefficient, and high corrosion resistance, can be obtained. The higher corrosion resistance of the chromized parts over that of the austenitic stainless steels was acquired by coating chromium carbides and a thin chromium oxides layer on the surface. Moreover, the surface morphology of chromized parts, which were composed of chromium rich phases and hardened chromium carbides by diffusing and alloying, had a peak-and-valley shape so that the dimple effect by the wrinkled morphology and high hardness induced a low friction coefficient.

Colloidal Probe 원자현미경을 이용한 2차전지 전극용 폴리머 바인더의 응착 및 마찰 특성 평가 (Assessment of Adhesion and Frictional Properties of Polymer Binders for Secondary Cells using Colloidal Probe Atomic Force Microscope)

  • 웬당쾅;정구현
    • Tribology and Lubricants
    • /
    • 제35권3호
    • /
    • pp.169-175
    • /
    • 2019
  • In lithium-ion batteries (LIBs), the stress induced by the volume change of an electrode during charge-discharge processes may often cause the mechanical integrity of the electrode to degrade. Polymer binders with enhanced mechanical properties are preferred for improved mechanical integrity and cycling stability of the electrode. In addition, given that sliding and shearing between the polymer binder and components in the electrode may readily occur, frictional and adhesion characteristics of the polymer binder may play a critical role in the mechanical integrity of the electrode. In this study, frictional and adhesion characteristics of polyacrylonitrile (PAN) and polyvinylidene fluoride (PVDF) were investigated using a colloidal probe atomic force microscope. Friction loops were obtained under various normal forces ranging from 0 to 159 nN in air and electrolyte and then the interfacial shear strengths of PAN and PVDF in air were calculated to be $1.4{\pm}0.5$ and $1.3{\pm}0.3MPa$, respectively. The results show that in electrolyte, interfacial shear strength of PAN decreased slightly ($1.2{\pm}0.2MPa$), whereas that of PVDF decreased drastically ($0.06{\pm}0.01MPa$). Decreases in mechanical properties and adhesion in electrolyte may be responsible for the decrease in interfacial shear strength in electrolyte. The findings from this study may be helpful in developing polymer binders to improve the mechanical integrity of electrodes in LIBs.