• 제목/요약/키워드: Friction component

검색결과 227건 처리시간 0.025초

롤러의 형상 불확실성을 고려한 테이퍼 롤러 베어링의 구동마찰토크 평가 (Evaluation of Running Friction Torque of Tapered Roller Bearings Considering Geometric Uncertainty of Roller)

  • 박정수;이승표
    • Tribology and Lubricants
    • /
    • 제39권5호
    • /
    • pp.183-189
    • /
    • 2023
  • A bearing is a mechanical component that transmits rotation and supports loads. According to the type of rotating mechanism, bearings are categorized into ball bearings and tapered roller bearings. Tapered roller bearings have higher load-bearing capabilities than ball bearings. They are used in applications where high loads need to be supported, such as wheel bearings for commercial vehicles and trucks, aircraft and high-speed trains, and heavy-duty spindles for heavy machinery. In recent times, the demand for reducing the driving friction torque in automobiles has been increasing owing to the CO2 emission regulations and fuel efficiency requirements. Accordingly, the research on the driving friction torque of bearings has become more essential. Researchers have conducted various studies on the lubrication, friction, and contact in tapered roller bearings. Although researchers have conducted numerous studies on the friction in the lips and on roller misalignment and skew, studies considering the influence of roller shape, specifically roller shape errors including lips, are few. This study investigates the driving friction torque of tapered roller bearings considering roller geometric uncertainties. Initially, the study calculates the driving friction torque of tapered roller bearings when subjected to axial loads and compares it with experimental results. Additionally, it performs Monte Carlo simulations to evaluate the influence of roller geometric uncertainties (i.e., the effects of roller geometric deviations) on the driving friction torque of the bearings. It then analyzes the results of these simulations.

종축 실린더의 항력에 대한 수치 해석적 연구 (A Numerical Study on the Drag of Axial Cylinder)

  • 이현배;최정규;김형태
    • 대한조선학회논문집
    • /
    • 제49권6호
    • /
    • pp.512-520
    • /
    • 2012
  • In this study, the numerical analysis for the flows around an axial cylinder is carried out in order to investigate the basic characteristics of drag of blunt body. A variation of drag and flow separation for the axial cylinder is investigated according to the length-diameter ratio. Also, the flow separation around the head is removed by rounding-off the front edge of the body to analyze the effect of drag reduction. Most of the drag turns out to be a pressure drag component and the variation of drag is caused by the change of pressure and velocity which is affected strongly by the flow separation at the edges of the axial cylinder. Especially, it is found that the pressure drag component acting on the back of axial cylinder, as known as the base drag, mainly changes the drag. As the length-diameter ratio of axial cylinder increases, the drag sharply decreases and the minimum is shown when the length-diameter ratio is about 2.4. Also, as the length-diameter ratio increases further above 2.4, the drag increases at a slower rate. The pressure drag is almost constant when the length-diameter ratio is greater than 8, but the increase of friction drag component is the reason for the increase of the drag. When flow separation is removed completely at the front edge of the axial cylinder, the pressure drag component is reduced to 12~17%, but the total drag is reduced to only 17%~32% due to the friction drag component that increases linearly proportional to the length-diameter ratio.

SIMPLE MODELS TO INVESTIGATE THE EFFECT OF VELOCITY DEPENDENT FRICTION ON THE DISC BRAKE SQUEAL NOISE

  • Shin, K.;Brennan, M.J.;Joe, Y.G.;Oh, J.E.
    • International Journal of Automotive Technology
    • /
    • 제5권1호
    • /
    • pp.61-67
    • /
    • 2004
  • This paper suggests two simple two-degree-of-freedom models to describe the dynamical interaction between the pad and the disc of a disc brake system. Separate models for in-plane and out -of-plane vibration are described. Although a brake pad and disc have many modes of vibration, the interaction between a single mode of each component is considered as this is thought to be crucial for brake noise. For both models, the pad and the disc are connected by a sliding friction interface having a velocity dependent friction coefficient. In this paper, it is shown that this friction model acts as negative damping in the system that describes the in-plane vibration, and as negative stiffness in system that describes the out-of-plane vibration. Stability analysis is performed to investigate the conditions under which the systems become unstable. The results of the stability analysis show that the damping is the most important parameter for in-plane vibration, whereas the stiffness is the most important parameter for the out-of-plane vibration.

원자력 발전소용 이종재(Cu 합금/STS316L) 마찰용접의 최적화와 AE에 의한 실시간 평가에 관한 연구 (Study on Optimization of Dissimilar friction Welding of Nuclear Power Plant Materials (Cu Alloy/STS316L) and Its Real Time AE Evaluation)

  • 유인종;권상우;황성필;공유식;오세규
    • 한국해양공학회지
    • /
    • 제15권2호
    • /
    • pp.88-93
    • /
    • 2001
  • In this paper, joints of Cu-1Cr-0.1Zr alloy to STS316L were performed by friction welding method. Particularly, Cu-1Cr-0.1Zr alloy is attractive candidate as nuclear power plant material and exibit the best combination of high strength and good electrical and thermal conductivity of any copper alloy examined. The stainless steel is a structural material while copper alloy acts as a heat sink material for the surface heat flux in the first wall. So, in this paper, not only the development of optimizing of friction welding with more reliability and more applicability but also the development of in-process real-time weld quality (such as strength and toughness) evaluation technique by acoustic emission for friction welding of such nuclear reactor component of Cu-1Cr-0.1Zr alloy to STS316L steel sere performed.

  • PDF

자동차 크랭크 軸用 鋼材의 棒對棒 同種材 摩擦熔接의 疲勞强度 特性 및 AE 評價 (Optimization of Bar-to-Bar Similar Friction Welding of Crank Shaft for Motor Vehicle and the Weld Fatigue Strength Properties and its AE Evaluation)

  • 오세규;양형태;김헌경
    • 한국해양공학회지
    • /
    • 제13권2호통권32호
    • /
    • pp.74-82
    • /
    • 1999
  • Nowadays, the crank shaft motor vehicle has become essential as the important component. The machining precision was asked for manufacturing the shaft. They could be unstable in the quality by the conventional are welding. Both in-process quailty control and high reliability of the weld are the major concerns in applying friction wlding to the economical and qualified mass-production. No reliable nondestructive monitoring method is avaliable at present to determine the real-time evaluation of automatic production quality control for bar-to-bar friction welding of the crank shaft of O.D 24mm for motor vehicle. This paper, so that, presents the experimental examinations and statistical quantitative analysis of the correlation between the cumulative counts of acoustic emission(AE) during plastic deformation periods of the welding and the tensile strength and other properties of the bar-to-bar welded joints of O.D. 24mm shaft as well as the various welding variables, as a new approach which attempts finally to develop real-time quality monitoring system for friction welding, resulting in practical possiblility of real-time quality control more than 100% joint efficiency showing good weld with no micro structural defects.

  • PDF

마모 입자가 음향방출신호에 미치는 영향에 관한 연구 (Investigation of the Effect of Wear Particles on the Acoustic Emission Signal)

  • 한재호;신동갑;김대은
    • Tribology and Lubricants
    • /
    • 제35권5호
    • /
    • pp.317-322
    • /
    • 2019
  • In spite of progress in tribological research, machine component failure due to friction and wear has been reported frequently. This failure may lead to secondary damage that can cause huge expense for maintenance and repair. To prevent economic loss, it is important to detect and predict the initial failure point. In this sense, various researchers have been tried to develop Condition Monitoring (CM) method using Acoustic Emission (AE) generated while the materials undergo failure. In this study, effect of particles on friction and wear was investigated using the pin-on-plate friction test and AE signal was recorded with a band-width type AE sensor. The experiments were performed in dry and lubricant conditions using steel and glass as specimens. After the experiment, 3D laser microscope image was captured to evaluate the wear behavior quantitatively. The AE signal was analyzed in time-domain and frequency-domain. The amplitude was compared with the frictional results. The results of this study showed that particle generation accelerate wear, generate high magnitude AE signal and change the frequency characteristics of the signal. Also, lubricant condition test results showed low coefficient of friction, low wear rate, and low magnitude of AE signal compared to the dry condition. It is expected that the results of this study will aid in better assessment of wear in CM technology

Alloy718/SCM440 마찰용접재의 AE에 의한 동적 거동평가 (Evaluation on Dynamic Behavior of Friction Welded Joints in Alloy718 to SCM440 using Acoustic Emission Technique)

  • 김동규;공유식;이진경
    • 한국산업융합학회 논문집
    • /
    • 제22권5호
    • /
    • pp.491-497
    • /
    • 2019
  • Dissimilar friction welding were produced using 15 mm diameter solid bar in superalloy(Alloy718) to chrome molybdenum steel(SCM440) to investigate their mechanical properties. Consequently, optimal welding conditions were n=2000 rpm, HP=60 MPa, UP=120 MPa, HT=10 sec and UT=10 sec when the metal loss(Mo) is 3.5 mm. Acoustic Emission(AE) technique was applied to analyze the dissimilar friction welding of Alloy718 and SCM440. The relationship between the AE parameters and dissimilar friction welding of both material was discussed. In the case of heating time of 6 sec, 10 sec, 14 sec and 20 sec, 5 AE events per 0.5 seconds and energy about $2.7{\times}10^{10}$ were exhibited in heating time. In upsetting time, resulting in various numbers of events per second and very low energy. The frequency range of the signal generated during the heating time was about 200 kHz. However, the upsetting time resulted in a wide range of signals from very low frequency to high frequency of 500 kHz due to rapid plasticity of the material.

강인 적응성 슬라이딩을 이용한 PMSM 서보드라이브 시스템 제어기 (Robust Adaptive Sliding Mode Controller for PMSM Servo Drives System)

  • 박기광;한병조;김홍필;양해원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1640_1641
    • /
    • 2009
  • Dynamic friction and force ripple are the most predominant factors that affect the positioning accuracy of permanent magnet synchronous motor(PMSM) servo drives system, and it is desirable to compensate them in finite time with a continuous control law. In this paper, based on LuGre dynamic friction model, a robust adaptive skidding mode controller is proposed to compensate the nonlinear effect of friction and force ripple. The controller scheme consists of a PD component and a robust adaptive sliding mode controller for estimating the unknown system parameter. Using Lyapunov stability theorem, asymptotic stability analysis and position tracking performance are guaranteed. Simulation results well verify the feasibility and the effectiveness of the proposed scheme for high0precision motion trajectory tracking.

  • PDF

쌍계사 오층석탑모델에 대한 지진격리효과 진동대실험 (Shaking Table Test of the Model of Five-story Stone Pagoda of Sang-Gye-Sa Mounted on Base Isolation Systems)

  • 김재관;이원주;김영중;김병현
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2001년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2001
    • /
    • pp.331-338
    • /
    • 2001
  • Seismic performances of the base isolated model of Five Story Stone Pagoda were studied through shaking table tests. Friction pendulum system (FPS), Pure-friction system with laminated rubber bearing (LRB) and Ball with rubber bearing were selected fur the comparison of performances. Performances of specially designed isolation systems were tested dynamically using shaking table. The test results of isolated model are compared with those of fixed base model. Compared with fixed base model, the isolated model showed that it could withstand much higer intensity of earthquake motion. The Effective Peak Ground Acceleration (EPGA) value of isolated model when the top component tipped over was above twice of that value in case of fixed base model. According to the additional test results, the lower value of coefficient of friction than that of common frictional base isolation systems is more effective to protect the piled multi-block system of Pagoda against moderate intesity of ground motion.

  • PDF

건마찰 감쇠기가 부착된 외팔보의 강제진동 응답 해석 (An Analysis of Forced Vibration Response of a Cantilever Beam with a Dry Friction Damper)

  • 고영준;강병용;장호경;김예현
    • 한국음향학회지
    • /
    • 제15권2호
    • /
    • pp.33-39
    • /
    • 1996
  • 비선형 건마찰 감쇠를 가진 외팔보의 강제진동 응답을 건마찰 감쇠기와 가진력의 위치변화에 대하여 미끄러진 변위와 힘레벨을 수치해석하였다. 구성모드의 분석은 비선형 감쇠를 가진 계를 해석하기 위해 구속조건과 Lagrange 승수에 기초를 두고 분석하였다. 외팔보의 진동분석 결과 건마찰 감쇠기가 부착된 단순 지지된 보(beam)에서 보여진 응답특성과 유사한 특성이 나타났다.

  • PDF