• 제목/요약/키워드: Friction Force Ratio

검색결과 155건 처리시간 0.022초

열처리 생략강의 인발특성 향상을 위한 윤활제와 피막제의 기계적 거동 고찰 (An Investigation on the Mechanical Behaviors of Lubricant and Coating to Improve the Drawability of Non-heat Treated Steels)

  • 이상준;유위경;이영석;변상민
    • 한국기계가공학회지
    • /
    • 제7권4호
    • /
    • pp.62-67
    • /
    • 2008
  • In this research, we developed a pilot wire-drawing machine as well as wire end-pointing roller. Using these machines, we performed a pilot wire-drawing test at different coating material and lubricant when the reduction ratio is 10 %. To inversely compute the friction coefficient between the coating layer of wire and the surface of die for a specific lubricant, we carried out a series of three dimensional finite element analysis. Results show that the drawing force is varied with the coating material of wire at the same reduction ratio and lubricant. It is noted that the frictional coefficient in drawing is dependent on the coupled property of coating material and lubricant, indicating the best coating material for a given lubricant.

  • PDF

축방향 공극형 Wobble 모터의 토오크 특성 및 힘 분포 해석 (Analysis of Torque and Force Distribution of Axial-Gap Type Wobble Moto)

  • 우성봉;이은웅;윤서진;김성종;최재영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 추계학술대회 논문집 학회본부 A
    • /
    • pp.9-11
    • /
    • 1999
  • This paper presents the problems of design and theoretical model of electrostatically driven axial-gap type wobble motor. The motor design benefits from large axial rotor-to-stator overlap and large gear ratios, and motor designs with rotor radii of 50 and $100{\mu}m$ are capable of generating torques in the [nNm] range at high electrostatic fields. Because of the large gear ratio, smaller angular steps and lower rotational speed are obtained, compared to radial-gap motor design. Aspects like gear ratio, torque generation, excitation schemes and torque coverage, normal forces, friction are addressed.

  • PDF

보행 시 생체신호분석을 통한 신발 착용 유무에 따른 마찰 특성 비교 (A Comparative Study on the Characteristics of Friction with/without shoes by Analyzing Bio-signals during walking)

  • 오성근;김진현
    • 융합정보논문지
    • /
    • 제8권6호
    • /
    • pp.59-66
    • /
    • 2018
  • 보행 시 지면에 대한 수직력에 대한 전단력의 비율, 즉 보행자가 사용한 마찰계수(UCOF)는 미끄러짐 발생 가능성 있는 시점을 식별하는데 사용된다. 신발보행은 신발창 두께와 경도, 뒤꿈치 모양, 밑창 문양 등의 신발 디자인이 사용마찰계수를 변화시킬 것이다. 본 연구에서는 보행 시 신발 착용 유무에 따른 사용마찰계수(UCOF) 차이를 분석하기 위해 성인남녀 21명(여자 10명, 남자 11명, 나이: $25.2{\pm}2.3yrs$, 키: $165.6{\pm}7.2cm$, 몸무게: $62.2{\pm}7.8kg$)을 대상으로 보행속도, 지면반력, 사용마찰계수(UCOF) 최대 시점, CoP-CoM-수직선 각도의 차이를 알아보고, 사용마찰계수(UCOF)와의 상관관계를 분석하였다. 그 결과, 첫째, 보행 시 신발 착용으로 인해 체중수용기(제동기)의 더 이른 시점에 사용마찰계수가 최대치에 도달하고, 또 그 크기도 증가한다. 둘째, CoP-CoM의 Tangent 값과 사용마찰계수(UCOF1)와의 상관관계는 오른발 제동 초기시점(UCOF1_h)보다 추진 후기에 발생하는 왼발(다음발) 착지시점(UCOF2_h)에서 더 높은 상관관계를 보여, 제동기 보다는 추진기(다음 발 제동기)와의 연관성을 시사한다.

동압축 하중을 받는 재료의 고변형도율에서의 마찰영향 (The friction effects at high strain rates of materials under dynamic compression loads)

  • 김문생
    • 대한기계학회논문집
    • /
    • 제11권3호
    • /
    • pp.454-464
    • /
    • 1987
  • 본 연구에서는 충격하중하에서 고변형도 .epsilon.=ln(h/h$_{o}$ )>1.0, 고변형도율 (.epsilon.>$10^{3}$m/s/m)로 변형하는 재료에 대하여 응력, 변형도, 변형도율사이의 함수관 계를 유도하고, 다음과 같은 현상들을 규명하였다. (1) 고변형도율에서 응력, 변형 도, 변형도율사이의 함수관계식 유도. (2) 압축하중시 시편과 접촉부재사이의 접촉면 에서 발생하는 마찰영향의 조사. (3) 유동응력과 시편의 기하학적 형상사이의 관계식 유도. (4) 압축하중시 재료의 제동현상(lock-up phenomena)의 해석.

Bond-slip behavior of reactive powder concrete-filled square steel tube

  • Qiuwei, Wang;Lu, Wang;Hang, Zhao
    • Steel and Composite Structures
    • /
    • 제45권6호
    • /
    • pp.819-830
    • /
    • 2022
  • This paper presented an experimental study of the bond-slip behavior of reactive powder concrete (RPC)-filled square steel tube. A total of 18 short composite specimens were designed forstatic push-out test, and information on their failure patterns, load-slip behavior and bond strength was presented. The effects of width-to-thickness ratio, height-to-width ratio and the compressive strength of RPC on the bond behavior were discussed. The experimental results show that:(1) the push-out specimens remain intact and no visible local buckling appears on the steel tube, and the interfacial scratches are even more pronounced at the internal steel tube of loading end; (2) the bond load-slip curves with different width-to-thickness ratios can be divided into two types, and the main difference is whether the curves have a drop in load with increasing slip; (3) the bond strength decreases with the increase of the width-to-thickness ratio and height-width ratio, while the influence of RPC strength is not consistent; (4) the slippage has no definite correlation with bond strength and the influence of designed parameters on slippage is not evident. On the basis of the above analysis, the expressions of interface friction stress and mechanical interaction stress are determined by neglecting chemical adhesive force, and the calculation model of bond strength for RPC filled in square steel tube specimens is proposed. The theoretical results agree well with the experimental data.

휨을 받는 고장력볼트 체결부에서 과대공에 따른 사용성에 관한 연구 (A Study on Serviceability of Oversized Bolt Hole in High-Tension Bolt Joint Subjected to Bending)

  • 박정웅;양승현;장석인
    • 한국산학기술학회논문지
    • /
    • 제10권10호
    • /
    • pp.2831-2836
    • /
    • 2009
  • 고장력볼트를 이용한 강부재의 연결부에서 마찰력을 초과하는 설계하중이 작용하여 미끄럼이 발생하는 점을 기점으로 볼트와 모재의 전단강도 및 지압강도에 의해 설계하중을 지지하게 된다. 미끄럼량은 볼트의 장력, 접촉면의 마찰계수, 모재구멍내에서 볼트의 위치에 따라 결정되어 질 수 있다. 본 연구에서는 모재 및 덮개판에 대하여 볼트구멍의 크기를 변화시켜 제작된 고장력볼트 체결부에 순수굽힘과 인장력이 작용하는 경우 표준공과 과대공에 따른 미끄럼을 측정하고 비교분석하였다. 표준공을 가지는 경우보다 과대공을 가지는 경우에 $74\sim94%$ 작은 하중에서 미끄럼이 발생하였다. 인장력을 받는 부재에서는 과대공치수가 클수록 미끄럼 하중비가 작게 나타났으며 모재의 과대공치수가 덮개판의 과대공치수보다 미끄럼하중변화와 연관성이 많은 것으로 나타났다.

The Effect on the Friction Forces of Big-End Bearing by the Aerated Lubricant

  • Park, Young-Hwan;Jang, Si-Youl
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.425-426
    • /
    • 2002
  • Lineal and angular movements of many engine components make the lubricant absorb air and the aerated lubricant greatly influences the clearance performance of contacting behaviors of engine components such as big-end bearing, cam and tappet, etc. This study investigates the behaviors of aerated lubricant in the gap between con-rod bearing and proceeding which is one of the most frictional energy consuming components in the engine. Our assumption for the analysis of aerated lubricant film is that the film formation is influenced by the two major factors. One is the density characteristics of the lubricant due to the volume change of lubricant by absorbing the bubbles and the other is the viscosity characteristics of the lubricant due to the surface tension of the bubble in the lubricant. In our investigation, it is found that these two major factors surprisingly increase the load capacity in certain ranges of bubble sizes and densities. Frictional forces are also influenced by the aerated bubble size and density, which eventually enlarge the shear resistance due the surface tension, Modified Reynolds' equation is developed for the computation of fluid film pressure with the effects of aeration ratio under the dynamic loading condition. From the calculated load capacity by solving modified Reynolds' equation, proceeding locus is computed with Mobility method at each time step.

  • PDF

극저온 냉각 및 나노유체 극미량 윤활을 적용한 티타늄 합금의 선반 절삭가공 특성에 관한 연구 (Experimental Characterization of Turning Process of Titanium Alloy Using Cryogenic Cooling and Nanofluid Minimum Quantity Lubrication)

  • 김진우;김정섭;이상원
    • 한국정밀공학회지
    • /
    • 제34권3호
    • /
    • pp.185-189
    • /
    • 2017
  • Recently, titanium alloys have been widely used in aerospace, biomedical engineering, and military industries due to their high strength to weight ratio and corrosion resistance. However, it is well known that titanium alloys are difficult-to-cut materials because of a poor machinability characteristic caused by low thermal conductivity, chemical reactivity with all tool materials at high temperature, and high hardness. To improve the machinability of titanium alloys, cryogenic cooling with LN2 (Liquid Nitrogen) and nanofluid MQL (Minimum Quantity Lubrication) technologies have been studied while turning a Ti-6Al-4V alloy. For the analysis of turning process characteristics, the cutting force, the coefficient of friction, and the surface roughness are measured and analyzed according to varying lubrication and cooling conditions. The experimental results show that combined cryogenic cooling and nanofluid MQL significantly reduces the cutting forces, coefficients of friction and surface roughness when compared to wet condition during the turning process of Ti-6Al-4V.

플라즈마 화학 기상 증착법으로 제작된 Diamond-Like Carbon 박막의 특성 (Characterizations of Diamond-Like Carbon Films Prepared by the Plasma Enhanced Chemical Vapor Deposition Method)

  • 김종탁
    • 한국전기전자재료학회논문지
    • /
    • 제11권6호
    • /
    • pp.465-471
    • /
    • 1998
  • Diamond-like carbon (DLC) films have been prepared by means of the plasma enhanced chemical vapor deposition (PECVD) method using vertical-capacitor electrodes. The deposition rata in our experiment is relatively small compared with that in the conventional PECVD methods, which implies that the accumulation of the neutral $CH_n$ radicals on the substrates due to the gravitational movement may not contribute to the deposition of DLC films. The hardness and the transparency were measured as a function of the ratio of the partial pressure of $CH_4-H_2$ mixtures or the hydrogen contents of specimens. The coefficients of friction between DLC films and a $Si_3N_4$ tip measured by using a lateral force microscope are in the range of 0.024 to 0.033 which depend on the hydrogen contents in DLC, and the surface roughness depends mainly on the deposition rate. The optical gaps increase with increasing the hydrogen contents. DCL films deposited on Pt-coated Si wafers show the stable emission characteristics, and the turn-on fields are in the range of 11 to 20 $V/\mu$m.

  • PDF

Analytical investigation on moment-rotation relationship of through-tenon joints with looseness in ancient timber buildings

  • Xue, Jianyang;Qi, Liangjie;Dong, Jinshuang;Xu, Dan
    • Earthquakes and Structures
    • /
    • 제14권3호
    • /
    • pp.241-248
    • /
    • 2018
  • To study the mechanical properties of joints in ancient timber buildings in depth, the force mechanism of the through-tenon joints was analyzed, also the theoretical formulas of the moment-rotation angles of the joints with different loosening degrees were deduced. To validate the rationality of the theoretical calculation formulas, six joint models with 1/3.2 scale ratio, including one intact joint and five loosening joints, were fabricated and tested under cyclic loading. The specimens underwent the elastic stage, the plastic stage and the destructive stage, respectively. At the same time, the moment-rotation backbone curves of the tenon joints with different looseness were obtained, and the theoretical calculation results were validated when compared with the experimental results. The results show that the rotational moment and the initial rotational stiffness of the tenon joints increase gradually with the increase of the friction coefficient. The increase of the tenon section height can effectively improve the bearing capacity of the through-tenon joints. As the friction coefficient of the wood and the insertion length of the tension increase, the embedment length goes up, whereas it decreases with the increase of section height. With the increase of the looseness, the bearing capacity of the joint is reduced gradually.