• Title/Summary/Keyword: Friction Flow Loss

Search Result 185, Processing Time 0.025 seconds

Measurements of Turbulent Flow In a$6\times{6}$ Rod Bundle with Spacer Grids (지지격자를 갖는 $6\times{6}$ 봉다발에서의 난류유동 측정)

  • Yang, Sun-Kyu;Chung, Moon-Ki
    • Nuclear Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.162-174
    • /
    • 1996
  • The local hydraulic characteristics in a single phase flow of a 6$\times$6 rod bundle with neighboring different spacer grids were measured by using a LDV(Laser Doppler Velocimeter) system. 6$\times$6 rod bundle is formed by two 3$\times$6 rod bundles with different spacer grids. The objective of this study in a rod bundle is to investigate the thermal-hydraulic interactions between different spacer grids with different configurations and resistance. By using a LDV system, the velocity and turbulent intensity in axial and horizontal directions ore measured. Pressure drop measurements ore also performed to evaluate the loss coefficient for the spacer grid and the friction factor for rod bundles. Implications concerning thermal mining due to spacer grids were investigated based on the hydraulic test results. Swirl factor, which is assumed as a qualitative criteria for DNB(departure from nucleate boiling), was defined and estimated from the horizontal velocity result.

  • PDF

Study on the Effects of Flows on the Acceleration of the Grooving Corrosion in the ERW Pipe (ERW강관에서 홈부식의 가속화에 미치는 유동의 영향에 관한 연구)

  • Kim, Jae-Seong;Kim, Yong;Lee, Bo-Young
    • Journal of Welding and Joining
    • /
    • v.26 no.4
    • /
    • pp.85-91
    • /
    • 2008
  • The grooving corrosion is caused mainly by the different microstructures between the matrix and weld which is formed during the rapid heating and cooling cycle in welding. By this localized corrosion reaction of pipes, it evolves economic problems such as the early damage of industrial facilities and pipe lines of apartment, and water pollution. So lots of researches were carried out already about grooving corrosion mechanism of ERW carbon steel pipe but there is seldom study for water hammer happened by fluid phenomenon and corrosion rate by flow velocity. In this study, the analysis based on hydrodynamic and fracture mechanics was carried out. ANSYS, FLUENT and STAR-CD were used for confirmation of flow phenomenon and stress on the pipe. As the results, fatigue failure is able to be happened by water hammer and grooving corrosion rate is increased cause by turbulent. Grooving corrosion is happened on the pipe, then friction loss of fluid is occurred from corroded part. Erosion can be happened enough in corroded region of microscopic size that wear "V" form. Also pipe is able to be damaged by water hammer effects because of corroded region is general acting as a notch effects. Corrosion depth was more than half of total thickness, it can be damaged from water hammer pressure.

An Assessment of the Best Estimate Thermal-Hydraulic Analysis Code CATHARE on CREARE Downcomer Experiment (CREARE Downcomer실험에 대한 최적열수력 분석용 전산코드 CATHARE의 검증)

  • Chang, Won-Pyo;Lee, Jae-Hoon;Kim, Dong-Su;Chae, Sung-Ki
    • Nuclear Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.274-284
    • /
    • 1992
  • A 1/15-scale CREARE experiment, which simulates the thermal-hydraulic behavior in the reactor pressure vessel of a PWR during a hypothetical Loss Of Coolant Accident, has been analyzed using CATHARE code for the associated model assessment to represent the phenomenon. The key parameters examined in the CREARE experiment were known as ECC water injection rate. ECC water subcooling, system pressure, and steam flow rate coming out from the core bottom. The present CATHARE simulation, however, has been mainly focused on qualitative analysis of a countercurrent flow in the downcomer. The discrepancy of the simulation results with the experimental data is considered arising primarily from an inadequate numerical representation as well as an interfacial friction model. Accordingly it is suggested from the sensitivity studies that either multidimensional approach or further examination of momentum equations at a junction near a volume element in CATHARE be necessary in order to represent the phenomenon more realistically.

  • PDF

Discharge Characteristics of Rotating Orifices with Length-to-Diameter Ratios and Inlet Corner Radii (길이 대 직경 비와 입구 모서리 반경에 따른 회전 오리피스의 송출 특성)

  • Ha, Kyoung-Pyo;Kang, Se-Won;Kauh, Sang-Ken
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.7
    • /
    • pp.957-966
    • /
    • 2000
  • The effect of rotation on the discharge coefficient of orifices with various length-to-diameter ratios and two different inlet corner radii was studied. Length-to-diameter ratios of the orifices range from 0.2 to 10, while the inlet shapes are square edged, or round edges of radius-to-diameter ratio of 0.5. From the experiment, we found that rotational discharge coefficient and Rotation number, when based on ideal exit velocity of the orifice considering momentum transfer from the rotor, describe the effect of rotation very well. In this study, the discharge coefficients of rotating orifices are shown to behave similar to those of the well-known non-rotating orifices. For both rotating and non-rotating orifices, the discharge coefficients increase with the length-to-diameter ratio until a maximum is reached. The flow reattachments in the relatively short orifices are responsible for the increase. The coefficient then decreases with the length-to-diameter ratio due to the friction loss along the orifice bore. The length-to-diameter ratio that yields maximum discharge coefficient, however, increases with the Rotation number because the increased flow-approaching angle requires larger length-to-diameter ratio for complete reattachment. The length-to-diameter ratio for complete reattachment is shorter for round edged orifices than that of square edged orifices by about a unit length-to-diameter ratio.

Development of a Surface Shape for the Heat Transfer Enhancement and Reduction of Pressure Loss in an Internal Cooling Passage (내부 냉각유로에서 열전달 강화와 압력손실 감소를 위한 표면 형상체의 개발)

  • Doo, Jeong-Hoon;Yoon, Hyun-Sik;Ha, Man-Yeong
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2465-2470
    • /
    • 2008
  • A new surface shape of an internal cooling passage which largely reduces the pressure drop and enhances the surface heat transfer is proposed in the present study. The surface shape of the cooling passage is consisted of the concave dimple and the riblet inside the dimple which is protruded along the stream-wise direction. Direct Numerical Simulation (DNS) for the fully developed turbulent flow and thermal fields in the cooling passage is conducted. The Numerical simulations for the 5 different surface shapes are conducted at the Reynolds number of 2800 based on the mean bulk velocity and channel height and Prandtl number of 0.71. The driving pressure gradient is adjusted to keep a constant mass flow rate in the x direction. The thermo-aerodynamic performance for the 5 different cases used in the present study was assessed in terms of the drag, Nusselt number, Fanning friction factor, Volume and Area goodness factor in the cooling passage. The value of maximum ratio of drag reduction is -22.86 [%], and the value of maximum ratio of Nusselt number augmentation is 7.05 [%] when the riblet angle is $60^{\circ}$ (Case5). The remarkable point is that the ratio of Nusselt number augmentation has the positive value for the surface shapes which have over $45^{\circ}$ of the riblet angle. The maximum Volume and Area goodness factor are obtained when the riblet angle is $60^{\circ}$ (Case5).

  • PDF

The Jet-fan Model Test for a Road Tunnel Ventilation (도로터널 제트팬 모형 실험)

  • Ryu, Jae-Hong;Yoo, Young-Ho;Kim, Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.8
    • /
    • pp.630-640
    • /
    • 2003
  • As tunnel ventilation has recently been playing a major role in the tunnel construction and maintenance, longitudinal ventilation systems with jet fans have been utilized a great deal because they are economical and effective. However, due to the length of tunnels and heavy traffic, it is hard to take the field measurements. In this study, therefore, the computer simulation and the model experiment of producing a wind tunnel were carried out simultaneously and the results were compared. The ultimate objective of this research was to interpret the air flow pattern inside the tunnel with a jet-fan was set up, and to offer the useful data for jet-fan installation and operation. The experiment was carried out with varying the jet-fan diameters, location of installation, the discharge velocity. Result showed that as the initial static pressure came up with the negative pressure, the tunnel air flowed into the inside of tunnel from outside due to the entrainment-effect and the backflow-phenomenon by separation-effect was observed in the lower half part of the tunnel. As the jet-fan was getting closer to the tunnel wall, the entrainment-effect caused by the interaction with the wall was increased; however, the mixing distance and irregular flow section became longer, and also the air pressure loss generated by wall friction was large.

A numerical study on effects of thermal buoyance force on number of jet fans for smoke control (도로터널 화재시 열부력이 제연용 제트팬 댓수에 미치는 영향에 대한 해석적 연구)

  • Yoo, Ji-Oh;Shin, Hyun-Jun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.3
    • /
    • pp.301-310
    • /
    • 2013
  • Jet fans are installed in road tunnels in order to maintain critical velocity when fire occurs. Generally the number of jet fans against fire are calculated by considering critical velocity and flow resistance by wall friction, vehicle drag force, thermal buoyance force and natural wind. In domestic case, thermal buoyance force is not considered in estimating the number of jet fans. So, in this study, we investigated the pressure loss due to the thermal buoyance force induced by tunnel air temperature rise and the impact of thermal buoyance force on the number of jet fans by the numerical fire simulation for the tunnel length(500, 750, 1000, 1500, 2000, 3500m) and grade (-1.0, -1.5, -2.0%). Considering the thermal buoyance force, number of jet fans have to be increased. Especially in the case of 100MW of heat release rate, the pressure loss due to thermal buoyance force exceed the maximum pressure loss due to vehicle drag resistance, so it is analyzed that number of 2~11 jet fans are needed additionally than current design criteria. Thus, in case of estimating the number of jet fans, it must be considered of thermal buoyance force induced tunnel air temperature rise by fire.

NUMERICAL STUDY OF TURBINE BLADE COOLING TECHNIQUES (터빈 블레이드 냉각시스템에 관한 수치해석적 연구)

  • Kim, K.Y.;Lee, K.D.;Moon, M.A.;Heo, M.W.;Kim, H.M.;Kim, J.H.;Husain, A.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.530-533
    • /
    • 2010
  • This paper presents numerical analysis and design optimization of various turbine blade cooling techniques with three-dimensional Reynolds-averaged Navier-Stokes(RANS) analysis. The fluid flow and heat transfer have been performed using ANSYS-CFX 11.0. A fan-shaped hole for film-cooling has been carried out to improve film-cooling effectiveness with the radial basis neural network method. The injection angle of hole, lateral expansion angle of hole and ratio of length-to-diameter of the hole are chosen as design variables and spatially averaged film-cooling effectiveness is considered as an objective function which is to be maximized. The impingement jet cooling has been performed to investigate heat transfer characteristic with geometry variables. Distance between jet nozzle exit and impingement plate, inclination of nozzle and aspect ratio of nozzle hole are considered as geometry variables. The area averaged Nusselt number is evaluated each geometry variables. A rotating rectangular channel with staggered array pin-fins has been investigated to increase heat transfer performance ad to decrease friction loss using KRG modeling. Two non-dimensional variables, the ratio of the eight diameter of the pin-fins and ratio of the spacing between the pin-fins to diameter of the pin-fins selected as design variables. A rotating rectangular channel with staggered dimples on opposite walls are formulated numerically to enhance heat transfer performance. The ratio of the dimple depth and dimple diameter are selected as geometry variables.

  • PDF

Measurements of Turbulent How in $5\times{5}$ PWR Rod Bundles With Spacer Grids (지지격자를 갖는 $5\times{5}$ PWR 봉다발에서의 난류유동 측정)

  • Yang, Sun-Kyu;Chung, Heung-June;Chun, Se-Young;Chung, Moon-Ki
    • Nuclear Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.263-273
    • /
    • 1992
  • The study on the velocity distribution and the pressure drop characteristic of the nuclear fuel assembly is of importance for the thermal hydraulic design and safety analysis. The purpose of this experimental study is to investigate the hydraulic mixing behind the different kinds of spacer grids in the now or rod bundles. In this study, the detailed hydraulic characteristics in subchannels of 5$\times$5 PWR(Pressurized Water Reactor) rod bundles were measured using one-component He-Ne LDV(Laser Doppler Velocimeter). Measurements of the axial velocity, turbulent intensities and pressure drops were peformed Lateral velocity, turbulent intensities and Reynolds shear stress were also measured by adjust-ing LDV alignment. Friction factors in rod bundles and loss coefficients for spacer grids were evaluated from the measured pressure drops. Hydraulic mixing performance for different kinds of spacer grids could be investigated by estimating the turbulent cross-flow mixing rates between neighboring subchannels.

  • PDF

A Study for Pressure Difference and Critical Velocity by Pressurization of Elevator Shaft at High Rise Apartment (고층 공동주택의 승강로가압을 이용한 차압 및 방연풍속에 관한 연구)

  • Park, Kyung-Hwan;Yoon, Myong-O
    • Fire Science and Engineering
    • /
    • v.25 no.4
    • /
    • pp.89-93
    • /
    • 2011
  • It is not recommended that elevator use for egress at (super) high rise buildings because elevator shaft main roles to spread of fire smoke. But in North America used to protect this area by elevator shaft pressurization. These tests are performed at high rise apartment to verify that elevator shaft pressurization can protect to spread of fire smoke or not. and verify to used for egress at fire. Pressurization at elevator shaft make pressure difference of 50 Pa all floor at 150 CMM because this method have low friction loss from air flow. Also when dwelling door and elevator door are opened that critical velocity is performed to protect of back-layering from fire room for escape routs by 180 CMM. Therefore through out these pressurization tests by elevator shaft are estimated to have less overpressure because supply air difference are low between to satisfy critical velocity at one door opened and maintain to pressure difference all doors closed. Finally we verified that disable or residual people can use elevator for egress at fire by elevator shaft pressurization.