• Title/Summary/Keyword: Friction Energy

Search Result 877, Processing Time 0.029 seconds

Quantitative Damage Assessment in KURT Granite by Acoustic Emission (미소파괴음을 이용한 KURT 화강암의 손상에 관한 정량적 평가)

  • Lee, Kyung-Soo;Kim, Jin-Seop;Choi, Hey-Joo;Lee, Chang-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6C
    • /
    • pp.305-314
    • /
    • 2012
  • This paper presents the quantitative damage assessment of granite taken from KAERI Underground Research Tunnel using acoustic emission (AE). The results determined showed the crack initiation and crack damage stress occurred at 48%, 72% of uniaxial compressive strength (UCS) and until the applied stress level was reached the crack damage stress, the damage degree was 0.06. When the applied stress exceeded 80%, 90% of UCS, the damage degree were 0.34, 0.06 and which were similar to those obtained from axial deformation modulus. The simply regression analysis was used to interpret the relationship of the two damage assessment techniques and the two were highly correlated ($R^2$=0.90). Therefore, damage degree based on the AE energy and mohr-coulomb failure criterion were adopted to predict the mechanical properties. As results, the axial deformation modulus, rock strength, internal friction angle, and cohesion of KURT rock were reduced 6%, 12%, 7%, and 3% until the applied stress was 70% of UCS. But when the applied stress reached 90% of UCS, the results were more reduced 69%, 72%, 62%, and 24%, respectively.

Wear Behaviors of WC-CoCr and WC-CrC-Ni Coatings Sprayed by HVOF (고속화염 용사법으로 제조된 WC-CoCr 코팅과 WC-CrC-Ni 코팅의 내마모 거동)

  • Lee, Seoung Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.204-211
    • /
    • 2020
  • The high-velocity oxy-fuel (HVOF) thermal spraying coating technique has been considered a promising replacement for traditional electrolytic hard chrome plating (EHC), which caused environmental pollution and lung cancer due to toxic Cr6+. In this paper, two types of cermet coatings were prepared by HVOF spraying: WC-CoCr and WC-CrC-Ni coatings. The produced coatings were analyzed extensively in terms of the micro-hardness, porosity, crystalline phase and microstructure using a hardness tester, optical microscopy, X-ray diffraction, and scanning electron microscopy (including energy dispersed spectroscopy (EDS)), respectively. The wear and friction behaviors of the coatings were evaluated comparatively by reciprocating sliding wear tests at 25 ℃, 250 ℃, and 450 ℃. The results revealed correlations among the microstructures, metallic binder matrixes, porosities, and wear performance of the coatings. For example, WC-CoCr coatings showed better sliding wear resistance than WC-CrC-Ni coatings, regardless of the test temperature due to the more homogeneous microstructure, Co-rich, Cr-rich metallic binder matrix, and lower porosity.

The comparative study of pure and pulsed DC plasma sputtering for synthesis of nanocrystalline Carbon thin films

  • Piao, Jin Xiang;Kumar, Manish;Javid, Amjed;Wen, Long;Jin, Su Bong;Han, Jeon Geon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.320-320
    • /
    • 2016
  • Nanocrystalline Carbon thin films have numerous applications in different areas such as mechanical, biotechnology and optoelectronic devices due to attractive properties like high excellent hardness, low friction coefficient, good chemical inertness, low surface roughness, non-toxic and biocompatibility. In this work, we studied the comparison of pure DC power and pulsed DC power in plasma sputtering process of carbon thin films synthesis. Using a close field unbalanced magnetron sputtering system, films were deposited on glass and Si wafer substrates by varying the power density and pulsed DC frequency variations. The plasma characteristics has been studied using the I-V discharge characteristics and optical emission spectroscopy. The films properties were studied using Raman spectroscopy, Hall effect measurement, contact angle measurement. Through the Raman results, ID/IG ratio was found to be increased by increasing either of DC power density and pulsed DC frequency. Film deposition rate, measured by Alpha step measurement, increased with increasing DC power density and decreased with pulsed DC frequency. The electrical resistivity results show that the resistivity increased with increasing DC power density and pulsed DC frequency. The film surface energy was estimated using the calculated values of contact angle of DI water and di-iodo-methane. Our results exhibit a tailoring of surface energies from 52.69 to $55.42mJ/m^2$ by controlling the plasma parameters.

  • PDF

An Experimental Study for Estimation of Head Loss Coefficients at Surcharged Combining Junction Manholes (과부하 합류맨홀에서의 손실계수 산정을 위한 실험적 연구)

  • Kim, Jung-Soo;Choi, Hyun-Soo;Yoon, Sei-Eui
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.5
    • /
    • pp.445-453
    • /
    • 2010
  • Energy loss at manholes, often exceeding friction loss of pipes under surcharged flow, is considered as one of the major causes of inundation in urban area. Therefore, it is necessary to analyze head losses at manholes, especially in case of surcharged flow. Hydraulic experimental apparatus which can change the manhole shape (square, circular) were installed for this study. In the experiments, two inflows ($Q_1,\;Q_2$) were varied from 0 to $4{\ell}$/sec and 15 combinations were tested in total. The flow ratios $Q_2/Q_3$ were varied from 0 to 1 for a total flow $Q_3$ ($Q_3=Q_1+Q_3$) of 2, 3, and $4{\ell}$/sec, respectively. The variation of head losses were strongly influenced by the lateral inflow because the head loss coefficient increases as the flow ratio $Q_2/Q_3$ increases. There was no significant difference of head loss between square manhole and circular one, and also no large variation of head loss as discharges change. The relation equations between K and $Q_2/Q_3$ were suggested in this paper.

Influence of coarse particles on the physical properties and quick undrained shear strength of fine-grained soils

  • Park, Tae-Woong;Kim, Hyeong-Joo;Tanvir, Mohammad Taimur;Lee, Jang-Baek;Moon, Sung-Gil
    • Geomechanics and Engineering
    • /
    • v.14 no.1
    • /
    • pp.99-105
    • /
    • 2018
  • Soils are generally classified as fine-grained or coarse-grained depending on the percentage content of the primary constituents. In reality, soils are actually made up of mixed and composite constituents. Soils primarily classified as fine-grained, still consists of a range of coarse particles as secondary constituents in between 0% to 50%. A laboratory scale model test was conducted to investigate the influence of coarse particles on the physical (e.g., density, water content, and void ratio) and mechanical (e.g., quick undrained shear strength) properties of primarily classified fine-grained cohesive soils. Pure kaolinite clay and sand-mixed kaolinite soil (e.g., sand content: 10%, 20%, and 30%) having various water contents (60%, 65%, and 70%) were preconsolidated at different stress levels (0, 13, 17.5, 22 kPa). The quick undrained shear strength properties were determined using the conventional Static Cone Penetration Test (SCPT) method and the new Fall Cone Test (FCT) method. The corresponding void ratios and densities with respect to the quick undrained shear strength were also observed. Correlations of the physical properties and quick undrained shear strengths derived from the SCPT and FCT were also established. Comparison of results showed a significant relationship between the two methods. From the results of FCT and SCPT, there is a decreasing trend of quick undrained shear strength, strength increase ratio ($S_u/P_o$), and void ratio (e) as the sand content is increased. The quick undrained shear strength generally decreases with increased water content. For the same water content, increasing the sand content resulted to a decrease in quick undrained shear strength due to reduced adhesion, and also, resulted to an increase in density. Similarly, it is observed that the change in density is distinctively noticeable at sand content greater than 20%. However, for sand content lower than 10%, there is minimal change in density with respect to water content. In general, the results showed a decrease in quick undrained shear strength for soils with higher amounts of sand content. Therefore, as the soil adhesion is reduced, the cone penetration resistances of the FCT and SCPT reflects internal friction and density of sand in the total shear strength.

A study on vibration control of the engine body for a large scale diesel engine using the semi-active controlled hydraulic type of top bracing (준능동형 유압식 톱브레이싱을 이용한 선박용 저속 2행정 디젤엔진의 본체 진동제어)

  • Lee, Moon-Seek;Kim, Yang-Gon;Hwang, Sang-Jae;Lee, Don-Chool;Kim, Ue-Kan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.6
    • /
    • pp.632-638
    • /
    • 2014
  • Nowadays, as part of an effort to increase the efficiency of propulsion shafting system, the revolution of the main diesel engine in CMCR(Contract Maximum Continuous Rating) is reduced whereas the stiffness of hull structure supporting the main diesel engine is relatively flexible. However, vibration problems related with resonant response of main diesel engine are increasing although top bracing is installed between the main diesel engine and the hull structures to increase natural frequency of engine body above CMCR to avoid resonant phenomenon. In this study, the dynamic characteristic of top bracing is reviewed by analyzing measuring results of general cargo ships which apply the hydraulic type instead of the friction type to control the natural frequency and the vibration of the engine body. Moreover, considering the vibration characteristic of the engine body and the hydraulic type of the top bracing by varying the number of top bracing, authors suggest the more effective way to control the vibration of the engine body despite of lower stiffness of the hull structure than in the past when the hydraulic type of top bracing is used.

Stability of TiN and WC Coated Dental Abutment Screw (TiN 및 WC코팅된 치과용 어버트먼트 나사의 안정성)

  • Son, M.K.;Lee, C.H.;Chung, C.H.;Jeong, Y.H.;Choe, H.C.
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.6
    • /
    • pp.292-300
    • /
    • 2008
  • Dental implant system is composed of abutment, abutment screw and implant fixture connected with screw. The problems of loosening/tightening and stability of abutment screw depend on surface characteristics, like a surface roughness, coating materials and friction resistance and so on. For this reason, surface treatment of abutment screw has been remained research problem in prosthodontics. The purpose of this study was to investigate the stability of TiN and WC coated dental abutment screw, abutment screw was used, respectively, for experiment. For improving the surface characteristics, TiN and WC film coating was carried out on the abutment screw using EB-PVD and sputtering, respectively. In order to observe the coating surface of abutment screw, surfaces of specimens were characterized, using field emission scanning electron microscope(FE-SEM) and energy dispersive x-ray spectroscopy(EDS). The stability of TiN and WC coated abutment screw was evaluated by potentiodynamic, and cyclic potentiodynamic polarization method in 0.9% NaCl solution at $36.5{\pm}1^{\circ}C$. The corrosion potential of TiN coated specimen was higher than those of WC coated and non-coated abutment screw. Whereas, corrosion current density of TiN coated screws was lower than those of WC coated and non-coated abutment screw. The stability of screw decreased as following order; TiN coating, WC coating and non-coated screw. The pitting potentials of TiN and WC coated specimens were higher than that of non-coated abutment screw, but repassivation potential of WC coated specimen was lower than those of TiN coated and non-coated abutment screws due to breakdown of coated film. The degree of local ion dissolution on the surface increased in the order of TiN coated, non-coated and WC coated screws.

Two Layer Modelling with Applications to Exchange Flow and Internal Tide (이층류 모델링의 교환류와 내부조석파 연구에의 적용)

  • Kang, Sok-Kuh;Abbott, Michael-B.;Heung, Jae-Lie;Yum, Ki-Dai
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.9 no.1
    • /
    • pp.9-23
    • /
    • 1997
  • A numerical study of a two-layer, stratified flow is investigated, using the implicit finite difference method in one dimension. The results of computational method have been tested and, in case of lock exchange flow, compared with the results of experimental data. The results of model experiments with various interfacial, bottom friction coefficients along with various time weighting factor of numerical scheme and dissipative interface are shown and discussed. Two-layer model experiment has been also carried out to investigate the generation and propagation characteristics of internal tidal wave over the steep bottom topography under stratified condition. The internal wave seems to well radiate through the downstream boundary under the experiments adopting radiation conditions both at two layers and only at upper layer, confirming the applicability of radiational boundary condition in stratified flows. It is also shown that the internal wave through the downstream boundary propagates more actively with increasing thickness of lower layer in the downstream. This implies that the potential tidal energy in the interface will depend upon the thickness of lower layer for the constant thickness of upper layer.

  • PDF

GEOTECHNICAL DESIGNS OF THE SHIP IMPACT PROTECTION SYSTEM FOR INCHEON BRIDGE

  • Choi, Sung-Min;Oh, Seung-Tak;Park, Sang-Il;Kim, Sung-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09c
    • /
    • pp.72-77
    • /
    • 2010
  • The Incheon Bridge, which was opened to the traffic in October 2009, is an 18.4 km long sea-crossing bridge connecting the Incheon International Airport with the expressway networks around the Seoul metropolitan area by way of Songdo District of Incheon City. This bridge is an integration of several special featured bridges and the major part of the bridge consists of cable-stayed spans. This marine cable-stayed bridge has a main span of 800 m wide to cross the vessel navigation channel in and out of the Incheon Port. In waterways where ship collision is anticipated, bridges shall be designed to resist ship impact forces, and/or, adequately protected by ship impact protection (SIP) systems. For the Incheon Bridge, large diameter circular dolphins as SIP were made at 44 locations of the both side of the main span around the piers of the cable-stayed bridge span. This world's largest dolphin-type SIP system protects the bridge against the collision with 100,000 DWT tanker navigating the channel with speed of 10 knots. Diameter of the dolphin is up to 25 m. Vessel collision risk was assessed by probability based analysis with AASHTO Method-II. The annual frequency of bridge collapse through the risk analysis for 71,370 cases of the impact scenario was less than $0.5{\times}10^{-4}$ and satisfies design requirements. The dolphin is the circular sheet pile structure filled with crushed rock and closed at the top with a robust concrete cap. The structural design was performed with numerical analyses of which constitutional model was verified by the physical model experiment using the geo-centrifugal testing equipment. 3D non-linear finite element models were used to analyze the structural response and energy-dissipating capability of dolphins which were deeply embedded in the seabed. The dolphin structure secures external stability and internal stability for ordinary loads such as wave and current pressure. Considering failure mechanism, stability assessment was performed for the strength limit state and service limit state of the dolphins. The friction angle of the crushed stone as a filling material was reduced to $38^{\circ}$ considering the possibility of contracting behavior as the impact.

  • PDF

Study on Analysis of Transfer Torque and Improvement of Transfer Torque in Non-Contact Permanent Magnet Gear (비접촉 영구자석 기어의 전달토크 분석 및 전달토크 향상에 대한 연구)

  • Park, Gyu-Sang;Kim, Chan-Ho;Kim, Yong-Jae
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.181-188
    • /
    • 2015
  • The non-contact permanent magnet gear has advantages of high efficiency and improved reliability. It has other advantages of no mechanical friction loss, very little noise and vibration, and no need for lubricant. With these advantages, the non-contact permanent magnet gear that solves the physical contact problem of the mechanical gear has drawn attention. Due to this unique non-contact characteristic, the non-contact permanent magnet gear which is capable of non-contact torque transmission has replaced mechanical gear. The mechanical gears which is in many fields of the modern industry, is used mostly for power transmitting mechanical devices. However, it also has the problem of a low torque density, which requires improvement. In this paper, a novel pole piece shape is proposed in order to improve the problem of low torque density of the non-contact permanent magnet gear. The experiment data required for predicting the relationships among them are obtained using finiteelement Operating method based on two-dimensional (2-D) numerical analysis. Therefore, this paper derived an optimal model for thenon-contact permanent magnet gear with the novel pole piece using the Box-Behnken design, and the validity of the optimal design of the proposed pole piece shape through variance analysis and regression analysis demonstrated. In this paper, we performed the thransfer torque analysis in order to improve the torque density and power density, we have performed on optimal design of proposed pole piece shape using box-behnken.