• Title/Summary/Keyword: Friction Effect

검색결과 1,987건 처리시간 0.031초

마찰을 고려한 포일 저널베어링의 정특성 해석 (The Static Performance Analysis of Foil Journal Bearings Considering Coulomb friction)

  • 김경웅;이동현;김영철
    • Tribology and Lubricants
    • /
    • 제24권6호
    • /
    • pp.378-385
    • /
    • 2008
  • In foil bearings, the friction between bumps and their mating surfaces is the major factor which exerts great influence on the bearing performance. From this point of view, many efforts have been made to improve the understanding of the influence of the friction on the foil bearing performance by developing a number of analytical models. However, most of them did not consider the hysteretic behavior of the foil structure resulting from the friction. The present work developed the static structural model in which hysteretic behavior of the friction was considered. The foil structure was modeled using finite element method and the algorithm which determines the conditions of the contact nodes and the directions of the friction forces was used to take into account the friction. The developed model was integrated into the foil bearing prediction code to investigate the effects of the friction on the static performance of the bearing. The results of analysis show that multiple static equilibrium positions are presented for the one static load under the influence of the friction, inferring its great effects on the dynamic performance. However, the effect of friction on the minimum film thickness which determines load capacity of the bearing is negligible.

건성마찰 소음에 대한 부식 영향도 실험연구 (An Experimental Investigation of the Effect of Corrosion on Dry Friction Noise)

  • 백종수;강재영
    • 대한기계학회논문집A
    • /
    • 제39권12호
    • /
    • pp.1251-1256
    • /
    • 2015
  • 본 연구에서는 왕복운동 및 회전운동 마찰 실험장치를 이하여 부식금속의 마찰소음특성을 파악하였다. 그 결과 부식금속이 소음발생 시키고 마찰소음의 크기를 증가시키는 것을 확인하였다. 또한, 마찰소음에서 부식의 영향은 마찰표면의 변화로부터 기인하는 것을 관찰할 수 있다. 마찰이 지속적으로 발생될 때 부식금속 마찰계수의 음의 기울기가 증가하여 부식이 되지 않은 금속에 비해 상대적으로 빠르게 불안정해 질 수 있음을 확인하였다.

5J32 알루미늄 합금의 마찰 점용접 (Spot Friction Welding of 5J32 Al alloy)

  • 이원배;이창용;연윤모;정승부
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2005년도 추계학술발표대회 개요집
    • /
    • pp.192-194
    • /
    • 2005
  • Joint strength of spot friction welded 5J32 Al alloy were investigated according to the tool shape and the tool penetration depth. General spot friction stir welding tool consists of a shoulder having bigger diameter and a threaded pin projected from the shoulder, which resulted in the generation of large up-lifting of upper plate around the weld nugget because of the deeper penetration and the severe stirring effect of threaded pin. Two kinds of welding tools without the threaded pin were used to avoid the distortion and improve the joint strength. One was a simple cylindrical shape and the other was cylindrical shape with small projection. Therefore, the process was named as spot friction welding comparing to spot friction stir welding because spot friction welding don't use a stirring effect. Using the cylindrical shape tool with small projection, the up-lifting of upper plate were avoided and joint strength were superior to that of the joint using simple cylindrical shape tool. At the 0.5mm of too penetration depth using cylindrical tool with small projection, nugget pull fracture mode can be observed and shear fracture mode were dominant at the rest conditions.

  • PDF

Diamond-like Carbon Tribological Endurance using an Energetic Approach

  • Alkelae, Fathia;Jun, Tea-Sung
    • Tribology and Lubricants
    • /
    • 제37권5호
    • /
    • pp.179-188
    • /
    • 2021
  • Reputed for their low friction coefficient and wear protection effect, diamond-like carbon (DLC) materials are considered amongst the most important lubricant coatings for tribological applications. In this framework, this investigation aims to elucidate the effect of a few operating parameters, such as applied stress and sliding amplitude on the friction lifetime of DLC coatings. Fretting wear tests are conducted using a 12.7 mm radius counterpart of 52100 steel balls slid against a substrate of the same material coated with a 2 ㎛ thickness DLC. Approximately, 5 to 57 N force is applied, generating a maximum Hertzian contact pressure of 430 to 662 MPa, corresponding to the applied force. The coefficient of friction (CoF) generates three regimes, first a running-in period regime, followed by a steady-state evolution regime, and finally a progressive increase of the CoF reaching the steel CoF value, as an indicator of reaching the substrate. To track the wear scenario, interrupted tests are performed with analysis combining scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), 3D profilometer and micro-Raman spectroscopy. The results show two endurance values: one characterizing the coating failure (Nc1), and the other (Nc2) indicating the friction failure which is situated where the CoF reaches a threshold value of μth = 0.3 in the third regime. The Archard energy density factor is used to determine the two endurance values (Nc1, Nc2). Based on this approach, a master curve is established delimitating both the coating and the friction endurances.

상대 재료의 경도를 고려한 DLC필름의 트라이볼로지 특성 (A Study on Tribological Characteristics of DLC Films Considering Hardness of Mating Materials)

  • 나병철;아키히로 타나카
    • 대한기계학회논문집A
    • /
    • 제26권2호
    • /
    • pp.260-266
    • /
    • 2002
  • DLC films were deposited on Si wafer by RF plasma assisted CVD using CH4 gas. Tribological tests were conducted using rotating type ball on disk friction tester in dry air. Four kinds of mating balls were used. The mating balls were made with stainless steel but apply different annealing conditions to achieve different hardness conditions. Testing results in all load conditions showed that the harder the mating materials, the lower the friction coefficient among the three kind of martensite mating balls. In case of austenite balls, the friction coefficients were lower than fully annealed martensite ball. The high friction coefficient in soft martensite balls seems to be caused by the larger contact area between DLC film and ball. The wear tracks of DLC films and mating balls could have proven that effect. Measuring the wear track of both DLC films and mating balls have similar tendency comparing to the results of friction coefficients. Wear rate of austenite balls were also smaller than that of fully annealed martensite ball. The results of effect of applying load showed, the friction coefficients were become decrease when the applying loads exceed critical load conditions. The wear track of mating balls showed that some material transfer occurs from DLC film to mating ball during the high friction process. Raman spectra analysis showed that transferred material was a kind of graphite and contact surface of DLC film seems to undergo phase transition from carbon to graphite during the high friction process.

마이크로 Crosshatch 그루우브 표면패턴의 각도에 따른 미끄럼 마찰특성 (Friction Property for Angles of Micro-crosshatch Grooved Surface Pattern under Lubricated Sliding Contact)

  • 채영훈
    • 한국정밀공학회지
    • /
    • 제24권1호
    • /
    • pp.79-84
    • /
    • 2007
  • Some surface pattern of tribological application is an attractive technology of engineered surface. Therefore, friction reduction is considered to be necessary for improved efficiency of machine. This study investigated the effect of friction property for angles of micro-crosshatch groove surface pattern on bearing steel using pin-on-disk test. We obtain sample which can be fabricated by photolithography process. We discuss the friction property depend on an angle of crosshatch groove surface pattern. We can verify the lubrication mechanism as Stribeck curve, which has a relationship between the friction coefficient and a dimensionless parameter under the lubrication condition. It was found that the friction coefficient was related to angle of crosshatch groove pattern on contact surface.

이온도움반응법에 의한 탄소섬유복합재의 트라이볼로지 특성연구 (Tribological Characteristics of Carbon Fiber Reinforced Plastics Prepared by Ion-Assisted Reaction)

  • 오성모;김정기;이봉구
    • 한국정밀공학회지
    • /
    • 제21권4호
    • /
    • pp.103-108
    • /
    • 2004
  • Carbon fiber reinforced composites(CFRP) were fabricated with phenolic resin matrix by hot press molding, and its surface was modified by the ion-assisted reaction process. When we tested the friction coefficient and wear rate variation and observed the effect of fibers with respect to friction and wear characteristics, the amount of pitch based carbon fiber was 45wt% and the average friction coefficient was the lowest at 0.12. When the amount of ion-irradiation was $1\times10^{l6}ions/cm^2$, the friction coefficient of the composites was about 0.12 and the wear mode was stable, whereas, the friction coefficient of the non-treated composites was about 0.16 and the wear mode was very unstable. But if the amount of ion-irradiation was $5\times10^{l6}ions/cm^2$$1\times10^{l6}ions/cm^2$ion-irradiation case.

링압축실험에 의한 유동응력 및 마찰인자의 결정 (II) (Determination of Flow Stress and Friction Factor by the Ring Compression Test (II))

  • 최영민;김낙수
    • 소성∙가공
    • /
    • 제3권2호
    • /
    • pp.215-228
    • /
    • 1994
  • The purpose of this paper is to pursue a general method to determine both the flow stress of a material and the friction factor by ring compression test. The materials are assumed to obey the expanded n-power hardening rule including the strain-rate effect. Ring compression is simulated by the rigid-plastic finite element method to obtain the database used in determining the flow stress and friction factor. The Simulation is conducted for various strain hardening exponent, strain-rate sensitivity, friction factor, and compressing speed, as variables. It is assumed that the friction factor is constant during the compression process. To evaluate the compatibility of the database, experiments are carried out at room and evaluated temperature using specimens of aluminum 6061-T6 under dry and grease lubrication condition. It is shown that the proposed test method is useful and easy to use in determining the flow stress and the friction factor.

  • PDF

저면압 영역에서 합금화 온도에 따른 합금화용융아연도금 강판의 마찰특성 평가 (Evaluation of Frictional Characteristic of Galvannealed sheet steel with different annealing temperatures at Lower Normal Loads)

  • 이정민;전성진;김동환;김동진;박성호;김병민
    • 한국정밀공학회지
    • /
    • 제23권4호
    • /
    • pp.109-115
    • /
    • 2006
  • This paper is designed to estimate friction and powdering characteristic of coating layer on galvannealed sheet steel with different annealing temperature, which is 465, 505, 515 and $540^{\circ}C$, Estimations of powdering and friction were done using a $60^{\circ}$ bending test and one side friction test, respectively. In order to obviously understand the effect of coatings on friction cross-section of coatings before and after friction test was also observed by SEM. The results show that powdering of coatings is increased with increasing of annealing temperature and that friction characteristic greatly depends on powdering which leads to increase of real contact area between tools and coatings.

스프링구동 캠에서 마찰과 스프링운동이 동적응답에 미치는 영향 (Influence of Spring Dynamics and Friction on Dynamic Responses in a Spring-Driven Cam)

  • 안길영;김수현
    • 대한기계학회논문집A
    • /
    • 제27권2호
    • /
    • pp.247-254
    • /
    • 2003
  • The paper presents the influence of spring dynamics and friction on dynamic responses in a spring-driven cam system. The characteristics of the friction on the camshaft are analyzed using the nonlinear pendulum experiment while the parameters of the friction model are estimated using the optimization technique. The analysis reveals that the friction of the camshaft depends on stick-slip, Stribeck effect and viscous damping. Spring elements are found to have much influence on the dynamic characteristics. Hence, they are modeled as four-degree-of-freedom lumped masses with equivalent springs. The appropriateness of the derived friction model and spring model is verified by its application to a vacuum circuit breaker mechanism of the cam-follower type.