• Title/Summary/Keyword: Friction Damper

Search Result 191, Processing Time 0.026 seconds

Development of a double-sliding friction damper (DSFD)

  • Shen, Shaodong;Pan, Peng;Sun, Jiangbo;Gong, Runhua;Wang, Haishen;Li, Wei
    • Smart Structures and Systems
    • /
    • v.20 no.2
    • /
    • pp.151-162
    • /
    • 2017
  • In practical engineering, the friction damper is a widely used energy dissipation device because of its large deformation capacity, stable energy dissipation capability, and cost effectiveness. While based on conventional friction dampers, the double-sliding friction damper (DSFD) being proposed is different in that it features two sliding friction forces, i.e., small and large sliding friction forces, rather than a single-sliding friction force of ordinary friction dampers. The DSFD starts to deform when the force sustained exceeds the small-sliding friction force, and stops deforming when the deformation reaches a certain value. If the force sustained exceeds the large sliding friction force, it continues to deform. Such a double-sliding behavior is expected to endow structures equipped with the DSFD better performance in both small and large earthquakes. The configuration and working mechanism of the DSFD is described and analyzed. Quasi-static loading tests and finite element analyses were conducted to investigate its hysteretic behavior. Finally, time history analysis of the single-degree-of-freedom (SDOF) and multi-degree-of-freedom (MDOF) systems were performed to investigate the seismic performance of DSFD-equipped structures. For the purpose of comparison, tests on systems equipped with conventional friction dampers were also performed. The proposed DSFD can be realized perfectly, and the DSFD-equipped structures provide better performances than those equipped with conventional friction dampers in terms of interstory drift and floor acceleration. In particular, for the MDOF system, the DSFD helps the structural system to have a uniform distributed interstory drift.

Dynamic Modeling and Analysis of a Friction Damper in Drum-type Washing Machine with a Magic Formula Model (Magic Formula 모델을 이용한 드럼세탁기용 마찰댐퍼의 동역학적 모델링과 해석)

  • Park, Jin-Hong;Lee, Jeong-Han;Yoo, Wan-Suk;Nho, Gyung-Hun;Chung, Bo-Sun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.10
    • /
    • pp.1034-1042
    • /
    • 2009
  • In this paper, the magic formula model was applied for a friction damper in a drum-type washing machine. To describe characteristics of the hysteretic damping force, Physical tests were first carried out to get experimental results using an MTS machine. Then, parameters for the magic formula model were determined from the experimental curves. The ADAMS and MATLAB programs were used for the multibody modeling of the damper and process for parameter identification. The model of drum-type washing machine was applied for a dynamic model of friction damper, in which the accuracy of the proposed damper model was verified.

Seismic progressive collapse mitigation of buildings using cylindrical friction damper

  • Mirtaheri, Masoud;Omidi, Zobeydeh;Salkhordeh, Mojtaba;Mirzaeefard, Hamid
    • Earthquakes and Structures
    • /
    • v.20 no.1
    • /
    • pp.1-12
    • /
    • 2021
  • The occurrence of progressive collapse induced by the removal of the vertical load-bearing element in the structure, because of fire or earthquake, has been a significant challenge between structural engineers. Progressive collapse is defined as the complete failure or failure of a part of the structure, initiating with a local rupture in a part of the building and can threaten the stability of the structure. In the current study, the behavior of the structures equipped with a cylindrical friction damper, when the vertical load-bearing elements are eliminated, is considered in two cases: 1-The load-bearing element is removed under the gravity load, and 2-The load-bearing element is removed due to the earthquake lateral forces. In order to obtain a generalized result in the seismic case, 22 pair motions presented in FEMA p 695 are applied to the structures. The study has been conducted using the vertical push down analysis for the case (1), and the nonlinear time-history analysis for the second case using OpenSEES software for 5,10, and 15-story steel frames. Results indicate that, in the first case, the load coefficient, and accordingly the strength of the structure equipped with cylindrical friction dampers are increased considerably. Furthermore, the results from the second case demonstrate that the displacements, and consequently the forces imposed to the structure in the buildings equipped with the cylindrical friction damper substantially was reduced. An optimum slip load is defined in the friction dampers, which permits the damper to start its frictional damping from this threshold load. Therefore, the optimum slip load of the damper is calculated and discussed for both cases.

Seismic Behavior of Reinforced Concrete Moment Frames Retrofitted by Toggle Bracing System with High Density Friction Damper (토글 가새-고집적 마찰댐퍼를 설치한 철근콘크리트 모멘트 골조의 성능 평가)

  • Han, Sang Whan;Kim, Ji Yeong;Moon, Ki Hoon;Lee, Chang Seok;Kim, Hyung Joon;Lee, Kang Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.133-140
    • /
    • 2014
  • The friction damper can be used for improving the seismic resistance of existing buildings. The damper is often installed in bracing members. The energy dissipation capacity of the damping systems depends on the type of the structure, the configuration of the bracing members, and the property of dampers. In Korea, there are numerous low- to mid-rise reinforced concrete moment frames that were constructed considering only gravity loads. Those frames may be vulnerable for future earthquakes. To resolve the problem, this study developed a toggle bracing system with a high density friction damper. To investigate the improvement of reinforced concrete frames after retrofit using the developed damped system, experimental tests were conducted on frame specimens with and without the damped system. The results showed that the maximum strength, initial stiffness and energy dissipation capacity of the framed with the damped system were much larger than those of the frame without the damped system.

Test Results of Friction Factor for Round-Hole Roughness Surfaces in Closely Spaced Channel Flow of Water

  • Ha, Tae Woong
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.10
    • /
    • pp.1849-1858
    • /
    • 2004
  • For examining friction-factor characteristics of round-hole pattern surfaces which are usually applied on damper seals, flat plate test apparatus is designed and fabricated. The measurement method of leakage and pressure distribution along round-hole pattern specimen with different hole area is described and a method for determining the Fanning friction factor is discussed. Results show that the round-hole pattern surfaces provide a much larger friction factor than smooth surface, and the friction factor vs. clearance behavior yields that the friction factor generally decreases as the clearance increases unlike the results of Nava's flat plate test. As the hole depth is decreased, the friction factor is increased, and maximum friction factor is obtained for 50% of hole area. Since the present experimental friction factor results show coincident characteristics with Moody's friction factor model, empirical friction factors for round-hole pattern surfaces are obtained by using the Moody's formula based on curve-fit of the experimental data. Results of Villasmil's 2D CFD simulation support the present experimental test result.

Development of Seismic Retrofit Devices for Building Structures

  • Kim, Jinkoo
    • International Journal of High-Rise Buildings
    • /
    • v.8 no.3
    • /
    • pp.221-227
    • /
    • 2019
  • In this paper passive seismic retrofit devices for building structures developed by the author in recent years are introduced. The proposed damping devices were developed by slightly modifying the configuration of conventional devices and enhancing their effectiveness. First a seismic retrofit system consisting of a pin-jointed steel frame and rotational friction dampers installed at each corner of the steel frame was developed. Then two types of steel slit dampers were developed; box-type slit damper and multi-slit damper. In addition, hybrid dampers were developed by combining a slit damper and a friction damper connected in parallel. Finally a self-centering system was developed by using preloaded tendons and viscous dampers connected in series. For each retrofit system developed, an appropriate analytical model was developed, and the seismic performance was verified by loading test and earthquake analysis of case study structures. The experimental and analysis results show that the proposed systems can be used efficiently to enhance the seismic performance of building structures.

Full-scale test of dampers for stay cable vibration mitigation and improvement measures

  • Zhou, Haijun;Xiang, Ning;Huang, Xigui;Sun, Limin;Xing, Feng;Zhou, Rui
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.4
    • /
    • pp.489-506
    • /
    • 2018
  • This paper reported test of full-scale cables attached with four types of dampers: viscous damper, passive Magneto-Rheological (MR) damper, friction damper and High Damping Rubber (HDR) damper. The logarithmic decrements of the cable with attached dampers were calculated from free vibration time history. The efficiency ratios of the mean damping ratios of the tested four dampers to theoretical maximum damping ratio were derived, which was very important for practical damper design and parameter optimization. Non-ideal factors affecting damper performance were discussed based on the test results. The effects of concentrated mass and negative stiffness were discussed in detail and compared theoretically. Approximate formulations were derived and verified using numerical solutions. The critical values for non-dimensional concentrated mass coefficient and negative stiffness were identified. Efficiency ratios were approximately 0.6, 0.6, and 0.3 for the viscous damper, passive MR damper and HDR damper, respectively. The efficiency ratio for the friction damper was between 0-1.0. The effects of concentrated mass and negative stiffness on cable damping were positive as both could increase damping ratio; the concentrated mass was more effective than negative stiffness for higher vibration modes.

ATC-55 Based Friction Damper Design Procedure for Controlling Inelastic Seismic Responses (비탄성 지진응답 제어를 위한 ATC-55에 기반한 마찰감쇠기 설계절차)

  • Kim, Hyoung-Seop;Min, Kyung-Won;Lee, Sang-Hyun;Park, Ji-Hun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.1 s.41
    • /
    • pp.9-16
    • /
    • 2005
  • The purpose of this paper is to present a design procedure of a friction damper for controlling elastic and inelastic responses of building structures under earthquake excitation. The equivalent damping and period increased by the friction damper are estimated using ATC-40 and ATC-55 procedures which provide equivalent linear system for bilinear one, and then a design formula to achieve target performance response level by the friction damper is presented. It is identified that there exists error between the responses obtained by this formula and by performing nonlinear analysis and the features of the error vary according to the hardening ratio, yield strength ratio, and structural period. Equations for compensating the error are proposed based on the least square method, and the results from numerical analysis indicate that the error is significantly reduced. The proposed formula can be used without much error for designing a friction damper for retrofitting a structure showing elastic or inelastic behavior.

Friction tuned mass damper optimization for structure under harmonic force excitation

  • Nasr, Aymen;Mrad, Charfeddine;Nasri, Rachid
    • Structural Engineering and Mechanics
    • /
    • v.65 no.6
    • /
    • pp.761-769
    • /
    • 2018
  • In this work, an optimization method of Friction Tuned Mass Damper (FTMD) parameters is presented. Friction tuned mass dampers (FTMD) are attached to mechanical structures to reduce their vibrations with dissipating the vibratory energy through friction between both bodies. In order to exploit the performances of FTMD, the determination of the optimum parameters is recommended. However, the presence of Coulomb's friction force requires the resolution of a non-linear stick-slip problem. First, this work aims at determining the responses of the vibratory system. The responses of the main mass and of the FTMD are determined analytically in the sticking and sliding phase using the equivalent damping method. Second, this work aims to optimize the FTMD parameters; the friction coefficient and the tuned frequency. The optimization formulation based on the Ricciardelli and Vickery method at the resonance frequencies, this method is reformulated for a system with a viscous damping. The inverse problem of finding the FTMD parameters given the magnitude of the force and the maximum acceptable displacement of the primary system is also considered; the optimization of parameters leads to conclude on the favorable FTMD giving significant vibration decrease, and to advance design recommendations.

The effect of mainshock-aftershock on the residual displacement of buildings equipped with cylindrical frictional damper

  • Mirtaheri, Masoud;Amini, Mehrshad;Rad, Moosa Doosti
    • Earthquakes and Structures
    • /
    • v.12 no.5
    • /
    • pp.515-527
    • /
    • 2017
  • Recently, Friction dampers become popular due to the desirable performance in the energy dissipation of lateral loads. A lot of research which has been conducted on these dampers results in developing friction dampers with low sensitivity to the number of cycles and temperature increases. Friction dampers impose high residual drifts to the buildings because of low post-yield stiffness of the damper which results from increasing lateral displacement and period of buildings. This issue can be more critical under strong aftershocks which results in increasing of structural damages. In this paper, in addition to the assessment of aftershock on steel buildings equipped with friction dampers, methods for controlling residual drifts and decreasing the costs of retrofitting are investigated. Utilizing rigid connections as a lateral dual system and activating lateral stiffness of gravity columns by adding elastic braces are as an example of effective methods investigated in this research. The results of nonlinear time history analyses on the low to medium rise steel frames equipped with friction dampers illustrate a rise in residual drifts as the result of aftershocks. In addition, the results show that different slip loads of friction damper can affect the residual drifts. Furthermore, elastic stories in comparison to rigid connections can reduce residual drifts of buildings in an effective fashion, when most slip loads of friction dampers are considered.