• Title/Summary/Keyword: Friction/wear characteristics

Search Result 537, Processing Time 0.02 seconds

The Friction and Wear Characteristics of the Seat Recliner Parts Based on Lubricant Characteristics (윤활제 특성에 따른 시트 리클라이너 부품의 마찰 및 마모 특성)

  • Hong, Seok-June;Lee, Kwang-Hee;Lim, Hyun-Woo;Kim, Jae-Woong;Lee, Chul-Hee
    • Tribology and Lubricants
    • /
    • v.35 no.3
    • /
    • pp.183-189
    • /
    • 2019
  • The driver seat of an automobile is in direct contact with the driver and provides the driver with a safe and comfortable ride. The seat consists of a frame, a rail, and many recliners. In recent years, strength and operating force measurement testing of the recliner have become vital for designing car seats. However, performance evaluation requires expensive testing equipment, numerous seat products, and considerable time. Therefore, the trend is to reduce experimentation through interpretation. This study examines the lubrication of solid lubricant for automotive seat recliners and confirms the friction and wear performance. In this study, the lubrication behavior of solid lubricants for car seat recliners is investigated to ascertain the friction and wear performance and to provide accurate values for the strength analysis. The friction material consists of a pin and a plate made from steel, which is widely used in recliners. The friction and wear under lubrication conditions are measured by a reciprocating friction wear tester. The friction coefficient is obtained according to the load and speed. Based on the obtained results, it is possible to achieve a reduction in the error of the test value and the analysis by providing the friction coefficient and wear of the lubricant. The results can be applied to the analysis of automobile seat design.

Experimental Study on the Friction Characteristics of Friction Modifiers (마찰저감제의 마찰특성에 관한 실험적 연구)

  • 문우식
    • Tribology and Lubricants
    • /
    • v.8 no.2
    • /
    • pp.7-13
    • /
    • 1992
  • Wear experiments were conducted using the SRV machine on the lubricated conditions of the several temperature and load. Oil samples were prepared by adding several friction modifiers into both paraffinic base oil and engine oil. Friction and wear characteristics of the oils were determined and are discussed in connection with the friction modifiers contained, the testing temperature and the load applied. From the study, it was found the MoDTC and the MoDTP, added into the engine oil, caused drastic increase in wear and had a tendendy to lose the friction-reducing property on some specific conditions of temperature and/or load, though they had the good property on other conditions. Ashless friction modifiers and dispersed $MoS_2$ investigated showed the good friction-reducing property, but the loads, where they became active, were different.

A Study on the Tribological Characteristics of Low Friction Coating Deposited on SUJ2 Bearing Steel (고탄소크롬 베어링강 2종(SUJ2) 베어링강에 증착된 저마찰 코팅의 트라이볼로지적 특성 연구)

  • Kang, Kyung-Mo;Shin, Dong-Gap;Park, Young-Hun;Kim, Se-Woong;Kim, Dae-Eun
    • Tribology and Lubricants
    • /
    • v.34 no.6
    • /
    • pp.254-261
    • /
    • 2018
  • In order to reduce resistance torque and energy loss, minimizing friction between race surface and rolling elements of a bearing is necessary. Recently, to reduce friction in bearing element, solid lubricant coating for the bearing raceway surface has been receiving much attention. Considering the operating conditions of real bearings, verifying the effect of solid lubricant coatings under extreme conditions of high load that is more than 1 GPa is necessary. In this study, we evaluated the friction and wear characteristics of SUJ2 bearing steels deposited by carbon-based coatings (Si-DLC, ta-C), $MoS_2$ and graphite. In case of $MoS_2$ and graphite coatings, different surface treatments were applied to the coatings to verify the effect of surface treatment. A pin-on-disc type tribotester was used to evaluate the tribological characteristics of the coatings. It was possible to quantitatively estimate the friction and wear characteristics of solid lubricant under dry and lubrication conditions. The carbon-based coatings improved the friction and wear properties of SUJ2 bearing steels under the high load condition, but $MoS_2$ and graphite coatings were not suitable for high load conditions due to its low hardness. Different friction and wear behaviors were found for different substrate surface treatment method. Also, it was confirmed that solid lubricant coatings had a more positive effect than just applying the lubricant for improving the tribological characteristics.

Friction and Wear Characteristics of Bonded Film Lubricants of Organically Modified Hybrid Ceramic Binder Materials (유기변성 하이브리드 세라믹 물질을 결합제로 이용한 고체피막윤활제의 마찰마모 특성)

  • 한흥구;공호성;윤의성
    • Tribology and Lubricants
    • /
    • v.19 no.4
    • /
    • pp.203-210
    • /
    • 2003
  • In order to enhance the thermal stability of binder materials of bonded type solid lubricants, several metal-alkoxide based sol-gel materials such as methyltrimethoxysilane(MTMOS), titaniumisopropoxide (Ti(Opr$\^$i/)$_4$), zirconiumisopropoxide (Zr(Opr$\^$i/)$_4$) and aluminumbutoxide (Al(Obu$\^$t/)$_4$) were modified chemically by both epoxy and acrylic silane compounds. Friction and wear characteristics of the bonded solid lubricants, whose binders were of several hybrid ceramic materials, were tested with a reciprocating tribo-tester. Wear life was evaluated with respect to the heat-curing temperature, friction temperature, type of supplement lubricants, and ratio of binder materials. Test results showed that the Si-Zr hybrid ceramic materials modified by epoxy-silane compounds had a higher wear life compared to others. Sb$_2$O$_3$ was the most effective supplement lubricants in the high temperature, and BUS analyses revealed that it was caused mainly by a strong anti-oxidation effect to MoS$_2$ particles. The higher heat-curing temperature resulted in the higher wear life, and the higher friction temperature resulted in the lower wear life.

Wear and friction characteristics of a carbon fiber composite against specular counterpart (탄소 섬유 복합재의 경면 상대재에 대한 마찰 및 마모 특성)

  • YANG BYEONG-CHUN;KOH SUNG-WI
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.390-394
    • /
    • 2004
  • This is the study on dry sliding wear behavior of unidirectional carbon fiber reinforced epoxy matrix composite at ambient temperature. The wear rates and friction coefficients against the stainless steel counterpart specularly processed were experimentally determined and the resulting wear mechanisms were microscopically observed. Three principal sliding directions relative to the dominant fiber orientation in the composite were selected. Wren sliding took place against smooth and hard counterpart, the highest wear resistance and the lowest friction coefficient were observed in the antiparallel direction. When the velocity between the composite and the counterpart went up, the wear rate increased. The fiber destruction and cracking caused fiber bending on the contact surface, which was discovered to be dominant wear mechanism.

  • PDF

Reducing the friction and the wear of carbon fiber composites with micro-grooves (미소채널 구조를 이용한 탄소 섬유 복합재료 면의 마찰 및 마모 감소)

  • Lee H.G.;Lee D.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.855-859
    • /
    • 2005
  • Carbon fiber polymeric composites have been widely used in bearing materials under high pressure without oil-lubrication due to their self-lubricating characteristics. However, the severe wear of carbon composite surface occurs due to the generation of wear debris when the pressure applied on the composite surface is higher than the critical value of composite surface. In this work, in order to remove wear debris continuously during sliding operation, composite specimens with many micro-grooves on their sliding surfaces were devised. To investigate the effect of wear debris on the tribological behavior of carbon/epoxy composites, dry sliding tests were performed with respect to applied pressure using the composite specimens with and without micro-grooves. From the measurement of friction coefficients and wear rates, a model for the effect of wear debris on the friction and wear of composites was proposed.

  • PDF

Friction and Wear Characteristics of Graphite Fiber Composites (탄소 섬유 복합재료의 마찰 및 마모 특성)

  • 심현해;권오관;유재륜
    • Tribology and Lubricants
    • /
    • v.5 no.2
    • /
    • pp.94-100
    • /
    • 1989
  • Friction and Wear behavior of continuous graphite fiber composites was studied for different fiber orientations against the sliding direction. The effect of fiber orientation on friction and wear of the composite and on the deformation of the counterface was investigated experimentally. Pin on disk type testing machine was built and employed to generate the friction and wear data. A graphite fiber composite plate was produced by the bleeder ply molding in an autoclave and machined into rectangular pin specimens with specific fiber orientations, i.e., normal, transverse, and longitudinal directions. Three different wear conditions were employed for two different periods of time, 24 and 48 hours. The wear track of the worn specimens and the metal counterface was examined with a scanning electron microscope (SEM) to observe the damaged fibers on the surface and wear film generation on the counterface. Wear mechanism of the composite during sliding wear is proposed based on the experimental results.

Influence of Disk Mass with regard to Frictional Characteristics of Brake Disk for Rolling Stock (디스크 질량 변화에 따른 철도차량용 제동디스크의 마찰 특성)

  • Jung, Jong Rok;Ko, Eun Sung;Lee, Hi Sung
    • Tribology and Lubricants
    • /
    • v.30 no.4
    • /
    • pp.240-245
    • /
    • 2014
  • Low alloy heat resistant brake disk and sintered brake pad are applied to mechanical brake system for the speed-up of urban rapid transit. In this research, we analyzed how the frictional characteristics between brake disk and pad are influenced by the disk mass. At a high disk mass, the friction stability was the lower value as a result of the lack of tribofilm formation at the disk surface. Wear rates of friction materials showed the higher value at a low disk mass and wear rates of 10 mm and 15 mm showed the similar level. Average friction coefficient was the lower value at the 10 mm disk thickness and range of variation of average friction coefficient was also the smaller value at the 10 mm disk thickness. However, there were no significant changes in the friction coefficients under any of test conditions. Surface roughness of a disk showed the highest value at the 5 mm disk and surface roughnesses of 10 mm and 15 mm showed the similar level. As a result, friction characteristics of disk mass influenced the friction stability, as well as the wear rate of friction pad and disk, but not the friction coefficient.

The Roles of Aramid Pulp and Potassium Titanate Whisker in the Automotive Friction Materials (자동차용 마찰재에 사용되는 아라미드 섬유와 티탄산칼륨 섬유의 역할)

  • Kim, Seong-Jin;Lim, Hyun-Woo;Jang, Ho
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.213-218
    • /
    • 1999
  • Friction and wear characteristics of novolac resin-based friction materials reinforced with aramid pulp and potassium titanate were investigated by using a pad-on-disk type friction tester. Friction properties such as friction stability, surface morphology, and wear rate varied according to the relative amount of aramid pulp and potassium titanate. The friction materials reinforced with both aramid pulp and potassium titanate showed superior friction stability and wear resistance due to the formation of durable transfer layer.

  • PDF

Friction, Wear and Scuffing Life of Piston Rings With Several Coating for Low Friction Diesel Enging (다양한 박막을 증착한 디젤 엔진용 피스톤링과 실린더 블록의 마찰 마멸 및 스커핑 수명 평가)

  • Ahn, Tae-Sik;Cho, Dae-Hyun;Oh, Chung-Soon;Lee, Young-Ze
    • Tribology and Lubricants
    • /
    • v.23 no.4
    • /
    • pp.170-174
    • /
    • 2007
  • Wear and scuffing tests were conducted using friction and wear measurement of piston rings and cylinder blocks in low friction diesel engine. The frictional forces, wear amounts and cycles to scuffing in boundary lubricated sliding condition were measured using the reciprocating wear tester. The cylinder blocks were used as reciprocating specimens, and the piston rings with several coatings were used as fixed pin. Several coatings were used such as DLC, TiN, Cr-ceramic and TiAlN in order to improve the tribological characteristics. From the tests wear volume of piston ring surfaces applied various coatings were compared. During the tests coefficients of friction were monitored. Test results showed that DLC coatings showed good tribological properties. TiN and Cr-ceramic coated rings showed good wear resistance properties but produced high friction.