• Title/Summary/Keyword: Friction/wear characteristics

Search Result 537, Processing Time 0.023 seconds

Wear characteristics on particle volume fraction of nano silica composite materials (입자 함유율의 변화에 따른 나노 실리카 복합재료의 마모 특성)

  • Lee, Jung-Kyu;Koh, Sung Wi
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.49 no.4
    • /
    • pp.492-499
    • /
    • 2013
  • The characteristics of abrasive wear of the rubber matrix composites filled with nano sized silica particles were investigated at ambient temperature by pin-on-disc friction test. The range of volume fraction of silica particles tested are between 11% to 25%. The cumulative wear volume and friction coefficient of these materials on particle volume fraction were determined experimentally. The major failure mechanisms were lapping layers, deformation of matrix, ploughing, deboding of particles and microcracking by scanning electric microscopy photograph of the tested surface. The cumulative wear volume showed a tendency to increase nonlinear with increase of sliding distance. As increasing the silica particles of these composites indicated higher friction coefficient.

Tribological Characteristics of Carbon Fiber Reinforced Plastics Prepared by Ion-Assisted Reaction (이온도움반응법에 의한 탄소섬유복합재의 트라이볼로지 특성연구)

  • 오성모;김정기;이봉구
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.4
    • /
    • pp.103-108
    • /
    • 2004
  • Carbon fiber reinforced composites(CFRP) were fabricated with phenolic resin matrix by hot press molding, and its surface was modified by the ion-assisted reaction process. When we tested the friction coefficient and wear rate variation and observed the effect of fibers with respect to friction and wear characteristics, the amount of pitch based carbon fiber was 45wt% and the average friction coefficient was the lowest at 0.12. When the amount of ion-irradiation was $1\times10^{l6}ions/cm^2$, the friction coefficient of the composites was about 0.12 and the wear mode was stable, whereas, the friction coefficient of the non-treated composites was about 0.16 and the wear mode was very unstable. But if the amount of ion-irradiation was $5\times10^{l6}ions/cm^2$$1\times10^{l6}ions/cm^2$ion-irradiation case.

The effect of solid lubricant on the frictional characteristics of Cu base sintered friction material. (소결 마찰재의 마찰특성에 미치는 고체 윤활제의 영향)

  • 정진현;이범주;조정환;정동윤;권석진
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1996.04b
    • /
    • pp.45-54
    • /
    • 1996
  • The effect of graphite on the frictional characteristics of Cu-based sintered friction materials was studied by pin-on-disk type wear test. A study has been carried out concerning the optimum concentration of graphite in sintered friction material to obtain the minimum wear rate and low friction coefficient . Friction coefficient and wear rate were increased as increasing the content of graphite in the matrix. In the study the optimum concentration of graphite was 19vol % to get the minimum wear rate and optimal frick'ion coefficient.

  • PDF

Friction and Wear Characteristics of Gray Cast Iron Surface Processed by Broaching Method (브로칭 가공된 회주철 소재 표면의 마찰 및 마모 특성)

  • Kwon, Mun-Seong;Kang, Kyeong-Hee;Kim, Dae-Eun
    • Tribology and Lubricants
    • /
    • v.34 no.6
    • /
    • pp.262-269
    • /
    • 2018
  • In this work the friction and wear characteristics of the gray cast iron surface processed by broaching method, which is widely used in the machinery industry, were investigated. The broaching process is mainly used for mass production because it has high dimensional accuracy and processing speed, but the defects on surface can be easily generated. In order to improve the tribological characteristics, the approach was to reduce the roughness and hardness of the surface by adding a machining process to the broaching specimen. The secondary machining process using abrasive grains produces low roughness and hardness than broaching because it has high tool accuracy and removes the work hardened surface. The friction coefficient and the wear rate were assessed using a reciprocating-type tribotester to analyze the effects of surface finishing on the tribological properties. The friction tests were conducted under dry and lubricated conditions. The test results showed that the reduction of surface roughness and hardness through secondary machining process in lubricated condition improved the friction and wear characteristics. The reason why the same results did not appear in a dry condition was that wear occurred more rapidly than in lubricated condition. Thus, the positive effect of roughness and hardness of the surface obtained through the secondary machining process was not observed.

Wear Assessment for Non-asbestos Friction Material against Cast Iron Drum (비석면 마찰재의 주철제 드럼에 대한 마멸 평가)

  • 한성호;이성만;신두식;김석삼
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1996.04a
    • /
    • pp.117-121
    • /
    • 1996
  • Friction and wear test for non-asbestos material against cast iron drum were carried out to investigate the friction and wear characteristics of brake system. Its friction coefficient and wear volume were measured and compared with those of asbestos friction material. The experiment. was perforated tinder room temperature and various sliding conditions. After each experiment, the sin-faces of friction materials were observed by SEM.

  • PDF

Study on Tribological Characteristics of Machine Component in Boundary Lubrication (경계윤활에서 기계 부품 소재의 트라이볼로지적 특성에 관한 연구)

  • Kim, Myeong-Gu;Seo, Kuk-Jin;Nam, Jahyun;Kim, Dae-Eun
    • Tribology and Lubricants
    • /
    • v.35 no.6
    • /
    • pp.356-361
    • /
    • 2019
  • The friction and wear between machine components directly influence the energy loss and failure in various machines. Therefore, there is always a demand for finding methods to reduce friction and wear. Of the possible methods, lubrication is a widely used method for reducing friction and wear. In the case of lubrication, it is important to analyze the tribological behavior in the boundary lubrication because most of friction and wear occurs in the boundary lubrication regime. Cast iron has been regarded as a good material for industrial applications due to the excellent mechanical properties and high productivity. Especially, nodular cast iron is a material that shows better mechanical properties and wear-resistance compared with cast iron due to inclusion of spheroidal graphite. In this work, we investigated the tribological characteristics of nodular cast iron with respect to different counter parts in boundary lubrication regime. Sliding tests were conducted with SUJ2, ZrO2, Si3N4 balls as counter parts using a pin-on-disk type tribotester. The results showed different friction and wear behaviors with different counter parts. The case of ZrO2 showed the lowest wear rate in specimen and no significant ball wear. In case of SUJ2, it showed similar wear rate with ZrO2 case in specimen and the highest friction coefficient. The case of Si3N4 showed the lowest friction coefficient, 33% lower than the case of SUJ2. It showed 16.9 times larger wear rate in specimen and 43% larger wear rate in ball compared to that of the SUJ2 case.

Characteristics of Wear on Sliding Speed of Glass Fiber Reinforcement Composites (유리섬유강화 복합재료의 미끄럼 속도변화에 따른 마모 특성)

  • Kim, Hyung Jin;Koh, Sung Wi
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.48 no.3
    • /
    • pp.277-283
    • /
    • 2012
  • The characteristics of abrasive wear on sliding speed of glass fiber reinforcement (GF/PUR) composites were investigated at ambient temperature by pin-on-disc friction test. The cumulative wear volume, friction coefficient and surface roughness of these materials on sliding speed were determined experimentally. The major failure mechanisms were lapping layers, deformation of resin, ploughing, delamination, and cracking by scanning electric microscopy (SEM) photograph of the tested surface. As increasing the sliding speed the GF/PUR composites indicated higher friction coefficient. The surface roughness of the GF/PUR composites was increased as the sliding speed was higher in wear test.

A Study on Friction Coefficient Prediction of Hydraulic Driving Members by Neural Network (신경회로망에 의한 유압구동 부재의 마찰계수 추정 에 관한 연구)

  • 김동호
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.5
    • /
    • pp.53-58
    • /
    • 2003
  • Wear debris can be collected from the lubricants of operating machinery and its morphology is directly related to the fiction condition of the interacting materials from which the wear particles originated in lubricated machinery. But in order to predict and estimate working conditions, it is need to analyze the shape characteristics of wear debris and to identify. Therefore, if the shape characteristics of wear debris is identified by computer image analysis and the neural network, The four parameter (50% volumetric diameter, aspect, roundness and reflectivity) of wear debris are used as inputs to the network and learned the friction. It is shown that identification results depend on the ranges of these shape parameters learned. The three kinds of the wear debris had a different pattern characteristic and recognized the friction condition and materials very well by neural network. We resented how the neural network recognize wear debris on driving condition.

A study on the cutting characteristics of SUS304 by flank wear (Flank 마모에 의한 SUS304의 절삭특성에 관한 연구)

  • Yu, Ki-Hyun;Cheong, Chin-Yong;Seo, Nam-Seob
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.2
    • /
    • pp.182-188
    • /
    • 1994
  • This expermintal study is intended to investigate he development of flank wear in turning os SUS304 which is used in industrial applications and is acknowledged as a machining difficult material. In cutting process, change of velocity, change of feed, and change of depth of cut were investigated about the effect of flank wear, and slenderness ratio is also investigated. The variations of unit cutting force with the change of rake angle and the change of uncut chip area are observed. The friction angles are calculated for the change friction force and observed. The friction angles are calculated for the change friction force and normal forcd on the different rake angles. From this experimental study, the following results can be said. 1. Under the high cutting speed condition, the flaank wear is affected by the feed and depth of cut, but the influence of feed and depth of cut to the flank wear is reduced when the velocity is low. 2. The smaller slenderness ratio is, the shorter the tool life results in high cutting speed, and the lower cutting speed is, the lower the effect of slenderness ratio to the flank wear is. 3. Using the characteristics of force-RMS, the flank wear of a tool can be detected. There are almost no differences between the RMS characteristics of cutting force and feed force.

  • PDF

An Experimental Study on the Anti-corrosion and Anti-wear Characteristics of MoS$_2$ Bonded Films for Automotive Wheel Joints (방청 및 내마모 특성이 향상된 자동차 휠 조인트용 $MoS_2$계 고체 피막 윤활제)

  • 한흥구;공호성;윤의성;권오관
    • Tribology and Lubricants
    • /
    • v.16 no.3
    • /
    • pp.173-181
    • /
    • 2000
  • Friction, wear and corrosion characteristics of various MoS$_2$ bonded film lubricants were investigated to apply them to automotive wheel joints. MoS$_2$ bonded film lubricants were formulated by combinations of several additives and binders, and they were coated onto the pre-treated surfaces of specimens. Friction and wear characteristics were evaluated with Falex pin & vee-block test and LFW-1 block-on-ring test. For the corrosion resistant characteristics of the films, salt solution spray corrosion tests were performed. Results showed that MoS$_2$ bonded films containing both inorganic and organic corrosion-resistant additives yielded a synergy effect on anti-corrosion resistance. Also, binders having the better water-proof and thermal stability showed the lower friction and higher corrosion resistance.