• Title/Summary/Keyword: Freundlich Isotherm

Search Result 420, Processing Time 0.033 seconds

Biosorption of Copper by the Immobilized biomass of Barine Brown Algae(Phaeophyta) Hizikia fusiformis (해양 갈조류인 톳의 고정화된 생물질에 의한 구리의 생흡착)

  • 이민규;박경태;감상규
    • Journal of Life Science
    • /
    • v.8 no.2
    • /
    • pp.208-215
    • /
    • 1998
  • It was investigated the biosorption performances of copper by the immobilized biomass of nonliving marine brown alge h. fusiformis by each of the Ca-alginate method(Ca-ALG), Ba-alginate method(Ba-ALG), polyethylene glycol method(PEG), and carrageenan method (CARR). The copper removal performance increased but the copper uptake decreased as the biomass amount was increased. However, the copper uptake by the immobilized biomass increased with increasing initial copper concentration. The copper uptake by the immobilized biomass of the immobilization method decreased in the following sequence; Ca-ALG>Ba-ALG>PEG>CARR among the immoblization emthods. The copper uptake by the immobilized biomass followed the Langmuir isotherm better than the Freundlich isotherm.

  • PDF

Adsorption Characteristics of Surfactants on Soil (계면활성제의 토양 흡착 특성)

  • Lee, Chaeyoung;Park, Seungyong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.10
    • /
    • pp.23-28
    • /
    • 2011
  • This study was conducted to investigate the adsorption characteristics of various surfactants including biosurfactant, SWA 1503, Triton X-100 and sodium dodecyl sulfate(SDS) on soil. The Freundlich adsorption isotherm equation was found to be the best to describe experimental results. The amount of adsorbed surfactant on soil increased as the content of clay increased. The results showed that surfactant was adsorbed mainly on the surface and the pores of soil since the surface area of clay was larger than that of sand. The amount of adsorbed surfactants on soil was as follows: Biosurfactant > SWA 1503 > Triton X-100 > SDS.

Immobilization of Diatom Phaeodactylum tricornutum with Filamentous Fungi and Its Kinetics

  • Tyler J. Barzee;Hamed M. El-Mashad;Andrew R. Burch;Annaliese K. Franz;Ruihong Zhang
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.2
    • /
    • pp.251-259
    • /
    • 2023
  • Immobilizing microalgae cells in a hyphal matrix can simplify harvest while producing novel mycoalgae products with potential food, feed, biomaterial, and renewable energy applications; however, limited quantitative information to describe the process and its applicability under various conditions leads to difficulties in comparing across studies and scaling-up. Here, we demonstrate the immobilization of both active and heat-deactivated marine diatom Phaeodactylum tricornutum (UTEX 466) using different loadings of fungal pellets (Aspergillus sp.) and model the process through kinetics and equilibrium models. Active P. tricornutum cells were not required for the fungal-assisted immobilization process and the fungal isolate was able to immobilize more than its original mass of microalgae. The Freundlich isotherm model adequately described the equilibrium immobilization characteristics and indicated increased normalized algae immobilization (g algae removed/g fungi loaded) under low fungal pellet loadings. The kinetics of algae immobilization by the fungal pellets were found to be adequately modeled using both a pseudo-second order model and a model previously developed for fungal-assisted algae immobilization. These results provide new insights into the behavior and potential applications of fungal-assisted algae immobilization.

Adsorption Equilibrium, Kinetics and Thermodynamics Studies of Malachite Green Using Zeolite (제올라이트를 이용한 말라카이트 그린의 흡착평형, 동력학 및 열역학 연구)

  • Lee, Jong-Jib
    • Clean Technology
    • /
    • v.18 no.1
    • /
    • pp.76-82
    • /
    • 2012
  • The paper includes utlization of zeolite as potential adsorbent to remove a hazardous malachite green from waste water. The adsorption studies were carried out at 298, 308 and 318 K and effects of temperature, contact time, initial concentration on the adsorption were measured. On the basis of adsorption data Langmuir and Freundlich adsorption isotherm model were also confirmed. The equilibrium process was described well by Freundlich isotherm model, showing a selective adsorption by irregular energy of zeolite surface. From determined isotherm constants, zeolite could be employed as effective treatment for removal of malachite green. From kinetic experiments, the adsorption process followed the pseudo second order model, and the adsorption rate constant ($k_2$) decreased with increasing initial concentration of malachite green. Thermodynamic parameters like activation energy, change of free energy, enthalpy, and entropy were also calculated to predict the nature adsorption. The activation energy calculated from Arrhenius equation indicated that the adsorption of malachite green on the zeolite was physical process. The negative free energy change (${\Delta}G^{\circ}$ =-6.47~-9.07 kJ/mol) and the positive enthalpy change (${\Delta}H^{\circ}$ = +32.414 kJ/mol) indicated the spontaneous and endothermic nature of the adsorption in the temperature range 298~318 K.

Characteristics of Isotherm, Kinetic, and Thermodynamic Parameters for Reactive Blue 4 Dye Adsorption by Activated Carbon (활성탄에 의한 Reactive Blue 4 염료의 흡착에 대한 등온선, 동력학 및 열역학적 특성)

  • Lee, Jong-Jib
    • Clean Technology
    • /
    • v.26 no.2
    • /
    • pp.122-130
    • /
    • 2020
  • The isotherm, kinetic, and thermodynamic parameters of reactive blue 4 adsorbed by activated carbon were investigated for activated carbon dose, pH, initial concentration, contact time, and temperature data. The adsorption of the RB 4 dye by activated carbon showed a concave shape in which the percentage of adsorption increased in both directions starting from pH 7. The isothermal adsorption data were applied to Langmuir, Freundlich, and Temkin isotherms. Both Freundlich and Langmuir isothermal adsorption models fit well. From determined Freundlich separation factor (1/n = 0.125 ~ 0.232) and Langmuir separation factor (RL = 1.53 ~ 1.59), adsorption of RB 4 by activated carbon could be employed as an effective treatment method. The constant related to the adsorption heat (BT = 2.147 ~ 2.562 J mol-1) of Temkin showed that this process was physical adsorption. From kinetic experiments, the adsorption process followed the pseudo second order model with good agreement. The results of the intraparticle diffusion model showed that the inclination of the first straight line representing the surface diffusion was smaller than that of the second straight line representing the intraparticle pore diffusion. Therefore, it was confirmed that intraparticle pore diffusion is the rate-controlling step. The negative Gibbs free energy change (ΔG = -3.262 ~ -7.581 kJ mol-1) and the positive enthalpy change (ΔH = 61.08 kJ mol-1) indicated the spontaneous and endothermic nature of the adsorption process, proving this process to be spontaneous and endothermic.

Isotherms, Kinetics and Thermodynamic Parameters Studies of New Fuchsin Dye Adsorption on Granular Activated Carbon (입상 활성탄에 대한 New Fuchsin 염료흡착의 등온선, 동력학 및 열역학 파라미터에 관한 연구)

  • Lee, Jong-Jib
    • Applied Chemistry for Engineering
    • /
    • v.25 no.6
    • /
    • pp.632-638
    • /
    • 2014
  • Batch adsorption studies including equilibrium, kinetics and thermodynamic parameters for the adsorption of new fuchsin dye using granular activated carbon were investigated with varying the operating variables such as initial concentration, contact time and temperature. Equilibrium adsorption data were fitted into Langmuir, Freundlich, Dubinin-Radushkevich and Temkin isotherms. Adsorption equilibrium was mostly well described by Langmuir Isotherm. From the estimated separation factor of Langmuir ($R_L$ = 0.023), and Freundlich (1/n = 0.198), this process could be employed as an effective treatment for the adsorption of new fuchsin dye. Also based on the adsorption energy (E = 0.002 kJ/mol) from Dubinin-Radushkevich isotherm and the adsorption heat constant (B = 1.920 J/mol) from Temkin isotherm, this adsorption is physical adsorption. From kinetic experiments, the adsorption reaction processes were confirmed following the pseudo second order model with good correlation. The intraparticle diffusion was a rate controlling step. Thermodynamic parameters including changes of free energy, enthalpy, and entropy were also calculated to predict the nature of adsorption. The change of enthalpy (92.49 kJ/mol) and activation energy (11.79 kJ/mol) indicated the endothermic nature of adsorption processes. The change of entropy (313.7 J/mol K) showed an increasing disorder in the adsorption process. The change of free energy found that the spontaneity of process increased with increasing the adsorption temperature.

Isotherm, Kinetic, Thermodynamic and Competitive for Adsorption of Brilliant Green and Quinoline Yellow Dyes by Activated Carbon (활성탄에 의한 Brilliant Green과 Quinoline Yellow 염료의 흡착에 대한 등온선, 동력학, 열역학 및 경쟁흡착)

  • Lee, Jong Jib
    • Korean Chemical Engineering Research
    • /
    • v.59 no.4
    • /
    • pp.565-573
    • /
    • 2021
  • Isotherms, kinetics and thermodynamic properties for adsorption of Brilliant Green(BG), Quinoline Yellow(QY) dyes by activated carbon were carried out using variables such as dose of adsorbent, pH, initial concentration, contact time, temperature and competitive. BG showed the highest adsorption rate of 92.4% at pH 11, and QY was adsorbed at 90.9% at pH 3. BG was in good agreement with the Freundlich isothermal model, and QY was well matched with Langmuir model. The separation coefficients of isotherm model indicated that these dyes could be effectively treated by activated carbon. Estimated adsorption energy by Temkin isotherm model indicated that the adsorption of BG and QY by activated carbon is a physical adsorption. The kinetic experimental results showed that the pseudo second order model had a better fit than the pseudo first order model with a smaller in the equilibrium adsorption amount. It was confirmed that surface diffusion was a rate controlling step by the intraparticle diffusion model. The activation energy and enthalpy change of the adsorption process indicated that the adsorption process was a relatively easy endothermic reaction. The entropy change indicated that the disorder of the adsorption system increased as the adsorption of BG and QY dyes to activated carbon proceeded. Gibbs free energy was found that the adsorption reaction became more spontaneous with increasing temperature. As a result of competitive adsorption of the mixed solution, it was found that QY was disturbed by BG and the adsorption reduced.

Adsorption Characteristics of Waste-Paint Activated Carbon (廢 페인트 活性炭의 吸着特性)

  • 박정호;박승조
    • Resources Recycling
    • /
    • v.9 no.6
    • /
    • pp.9-14
    • /
    • 2000
  • Comparing the adsorption characteristics of coconut shell activated carbon (CSAC) and waste paint activated carbon (WPAC), Freundlich adsorption isotherms of alkylbenzene sulfonate (ABS) obtained from the secondary treatment water of H company and effluent of D company were estimated q=23.12 $C^{0.42}$ , q=18.32 $C^{0.38}$ with WPAC and $q=36.76C^{1.37}$ /, q=26.67 $C^{0.42}$ with CSAC respectively. In the case of H company, breakthrough time of the ABS using CSAC by continuous experiment was estimated 680 minute md that of WPAC was 610 minute. In the case of D company effluent, CSAC was estimated 720 minute, and that of WPAC was estimated 640 minute to reach the breakthrough. From the above results, it is possible to replace the coco-nut shell activated carbon with wasted paint activated carbon.

  • PDF

Lead Adsorption onto a Domestic Ca-Bentonite (국산 칼슘-벤토나이트에 대한 납 흡착)

  • 고은옥;이재완;조원진;현재혁;강철형;전관식
    • Journal of Korea Soil Environment Society
    • /
    • v.5 no.1
    • /
    • pp.55-63
    • /
    • 2000
  • Bentonite has low hydraulic conductivity and high sorption capacity to limit hazardous heavy metals migration, and thus it has been considered as a liner material for the landfill of hazardous wastes. With a domestic bentonite sorption tests were carried out to investigate the adsorption isotherm and the effect of solution chemistry and temperature on adsorption. Freundlich isotherm was applied to fit the experimental data of lead adsorption, which fitted them well. Freundlich constants and correlation coefficient were calculated to be $K_{F}$\;=\;1.14$, n = 1.70, and $r^{2}\;=\;0.99$, respectively. The distribution coefficients($K_{d}$) for the adsorption of lead decreased with increasing initial lead concentration. The IL increased with increasing the pH of solution and sharply increased at pH > 7, which was attributed to the precipitation of lead species. The IL decreased with increasing the ion strength of solution. The $K_{d}$ gave a small increase with the concentration of ${SO_4}^{-2}$, whereas it had a nearly constant level with the concentration of ${HCO_3}^{-}$ in solution. An increase in the temperature of experimental solution increased the $K_{d}$.

  • PDF

Behaviors of the Fungicide Procymidone in Soils (살균제 Procymidone의 토양 중 동태)

  • Choi, Gyu-Il;Seong, Ki-Yong;Kim, Jeong-Gyu
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.2
    • /
    • pp.123-131
    • /
    • 2005
  • This study was focused on adsorption, leaching, photolysis, and hydrolysis of the fungicide procymidone in soils. Adsorption type of procymidone on three different soil were well fitted to Linear and Freundlich isotherm. Distribution coefficients (Kd) were ranged from 2.75 to 12.18 and Freundlich isotherm Kf value $1.99{\sim}9.98$, 1/n value $0.74{\sim}0.89$. Desorption rates were $20.1{\sim}34.0%$ (Namgye), $26.3{\sim}44.6%$ (Jigog) and $31.6{\sim}50.9%$ (Baegsan series) and desorption hysteresis were $0.65{\sim}0.79,\;0.55{\sim}0.73\;and\;0.49{\sim}0.68$. Procymidone seemed to be stable to photolysis in acidic and neutral solutions but hydrolyzed rapidly in alkaline solution. Considering leaching properties procymidone mobility low in soils.