• Title/Summary/Keyword: Fretting wear corrosion

Search Result 21, Processing Time 0.028 seconds

Friction and Wear of Inconel 690 for Steam Generator Tube in Fretting (증기발생기 세관용 Inconel 690 의 프레팅 마찰 및 마멸특성)

  • Lee, Young-Ze;Lim, Min-Kyu;Oh, Se-Doo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.3
    • /
    • pp.432-439
    • /
    • 2003
  • Inconel 690 for nuclear steam generator tube has more Chromium than the conventionally used Inconel 600 in order to increase the corrosion resistance. To evaluate the tribological characteristics of Inconel 690 under fretting condition the fretting tests were carried out in air and elevated temperature water. Fretting tests of the cross-cylinder type were done under various vibrating amplitudes and applied normal loads in order to measure the friction forces and wear volumes. From the results of fretting wear tests. the wear of Inconel 690 can be predictable using the work rate model. The amounts of friction forces were proportional to relative movement between two fretting surfaces. The friction coefficients were decreased as increasing the normal loads and deceasing the vibrating amplitudes. Depending on fretting environment, distinctively different wear mechanisms and often drastically different wear rates can occur It was found that the fretting wearfactors in air and water at 2$0^{\circ}C$, 5$0^{\circ}C$, and 8$0^{\circ}C$ were 7.38 $\times$ $10^{-13}$$Pa^{-1}$, 2.12 $\times$$10^{-13}$$Pa^{-1}$, 3.34$\times$$10^{-13}$$Pa^{-1}$and 5.21$\times$$10^{-13}$$Pa^{-1}$, respectively flexibility to model response data with multiple local extreme. In this study, metamodeling techniques are adopted to carry out the shape optimization of a funnel of Cathode Ray Tube, which finds the shape minimizing the local maximum principal stress. Optimum designs using two metamodels are compared and proper metamodel is recommended based on this research.

Fretting Wear Characteristics of the Corroded Fuel Cladding Tubes for Nuclear Fuel Rod against Supporting Girds (부식된 핵연료 피복관과 지지격자 사이의 프레팅 마멸 특성)

  • Kim, Jin-Seon;Park, Se-Min;Kim, Yong-Hwan;Lee, Seung-Jae;Lee, Young-Ze
    • Tribology and Lubricants
    • /
    • v.23 no.3
    • /
    • pp.130-133
    • /
    • 2007
  • Fuel cladding tubes in nuclear fuel assembly are held up by supporting grids because the tubes are long and slender. Fluid flows of high-pressure and high-temperature in the tubes cause oscillating motions between tubes and supports. This is called as FIV (flow induced vibration), which causes fretting wear in contact parts of tube and support. The fretting wear of tube and support can threaten the safety of nuclear power plant. Therefore, a research about the fretting wear characteristics of tube-support is required. The fretting wear tests were performed with supporting grids and cladding tubes, especially after corrosion treatment on tubes, in water. The tests were done using various applied loads with fixed amplitude. From the results of fretting tests, the wear amounts of tube materials can be predictable by obtaining the wear coefficient using the work rate model. Due to stick phenomena the wear depth was changed as increasing load and temperature. The maximum wear depth was decreased as increasing the water temperatures. At high temperatures there are the regions of some severe adhesion due to stick phenomena.

Fretting Wear Characteristics of the Corroded Fuel Cladding Tubes for Nuclear Fuel Rod against Supporting Girds (부식된 핵연료 피복관과 지지격자 사이의 프레팅 마멸 특성)

  • Lee, Young-Ze;Kim, Jin-Seon;Park, Se-Min;Kim, Yong-Hwan;Lee, Seung-Jae
    • Tribology and Lubricants
    • /
    • v.24 no.3
    • /
    • pp.129-132
    • /
    • 2008
  • Fuel cladding tubes in nuclear fuel assembly are held up by supporting grids because the tubes are long and slender. Fluid flows of high-pressure and high-temperature in the tubes cause oscillating motions between tubes and supports. This is called as FIV (flow induced vibration), which causes fretting wear in contact parts of tube and support. The fretting wear of tube and support can threaten the safety of nuclear power plant. Therefore, a research about the fretting wear characteristics of tube-support is required. The fretting wear tests were performed with supporting grids and cladding tubes, especially after corrosion treatment on tubes, in water. The tests were done using various applied loads with fixed amplitude. From the results of fretting tests, the wear amounts of tube materials can be predictable by obtaining the wear coefficient using the work rate model. Due to stick phenomena the wear depth was changed as increasing load and temperature. The maximum wear depth was decreased as increasing the water temperatures. At high temperatures there are the regions of some severe adhesion due to stick phenomena.

A study on change in electric contact resistance of the tin-plated copper connector of automotive sensor due micro-vibration (차량용 주석 도금된 구리 커넥터에서 미세진동에 의한 전기접촉 저항변화에 관한 연구)

  • Yu, Hwan-Sin;Park, Hyung-Bae
    • Journal of Advanced Navigation Technology
    • /
    • v.12 no.6
    • /
    • pp.653-658
    • /
    • 2008
  • The automotive environment is particularly demanding on connector performance, and is characterized by large temperature changes, high humidity and corrosive atmospheres. Fretting is a contact damage process that occurs between two contact surfaces. Fretting corrosion refers to corrosion damage at the asperities of contact surfaces. This damage is induced under load and in the presence of repeated relative surface motion, as induced for example by vibration. This paper critically reviews the works published previously on fretting corrosion of electrical connectors. Various experimental approaches such as testing machines, material selection, testing environments, acceleration testing techniques and preventing methods are addressed. Future research prospects arc suggested.

  • PDF

Corrosive Wear of Alloy 690 Tubes in Alkaline Water

  • Hong, Seung Mo;Jang, Changheui;Kim, In Sup
    • Corrosion Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.126-131
    • /
    • 2009
  • The interaction between wear and corrosion can significantly increase total material losses in water chemistry environment. The corrosive wear tests of a PWR steam generator tube material (Alloy 690) against the anti vibration bar material (409 SS) were performed at room temperature. The tests were performed in alkaline water chemistry conditions. NaOH solution was selected for test condition to investigate the corrosive wear effect of steam generator tube material in alkaline pH condition without other factors. The flow induced vibration can caused tube damage and the corrosion can be occurred by water chemistry. The test results showed that, in the alkaline solution at pH 13.9, the corrosion current density was increased about ten times than that in the distilled water. And wear rate at pH 13.9 was increased about ten times from that at neutral condition. However, the wear rate was decreased with time. The decrease would be attributed to the change in roughness of specimen or sub-layer of the worn surface with time. From microstructure observation, severe abrasive shape and several wear debris were found. From those results, it could infer that the oxide film on Alloy 690 changed to easily breakable one in the alkaline water, and then abrasion with corrosion became the main wear mechanism.

The Design Optimization of Preventive Measure Against APR1400 Steam Generator Tube Fretting Wear (신형경수로 증기발생기 마모손상 억제를 위한 설계최적화)

  • Lim, Hyuk-Soon;Park, Young-Sheop;Lee, Kwang-Han;Lee, Seok-Ho;Chung, Dae-Yul
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.2047-2052
    • /
    • 2004
  • Inconel-600 alloy has been used as steam generator tube material for current pressurized water reactors (PWRs). The long-term operation of steam generators showed that the use of this material induced localized corrosion damages and increased tube wear of steam generator. To protect these problems, steam generator tube material is being changed to Inconel-690 alloy. Based on the current trend, we have chosen Inconel 690 as the Advanced Power Reactor 1400 (APR1400) steam generator(SG) tube material and performed the design optimization of preventive measure against tube fretting wear for the APR1400 steam generator. In this paper, we examined the technical consideration in this modification : the selection of material, wear characteristics, effect of the Egg-crate Flow Distribution Plate installation, and effect analysis of vertical strip installation.

  • PDF

The Performance Test on Me-DLC Films for Improving Wear Resistance of LM-Guide (LM 가이드의 내마모성 향상을 위한 Me-DLC 코팅박막의 성능평가)

  • Kang, Eun-Goo;Lee, Dong-Yoon;Kim, Seong-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.4
    • /
    • pp.409-416
    • /
    • 2012
  • Recently, surface modification technology is of importance to improve the wear resistance and the corrosive resistance for high accurate mechanical parts such as LM guide, Ball Screw and Roller Bearing etc., Those has generally featured on rolling contact mechanism to improve not only the wear and the friction, but also the accuracy and the corrosion performances. For surface modifications of high accurate mechanical parts, normally thermal spray, PVD, CVD and E.P. processes have been used with many materials such as DLC, raydent, W, Ni, Ti etc. Diamondlike carbon (DLC) films possess a combination of attractive properties and have been largely employed to modify the tribological behaviors such as friction, wear, corrosion, fretting fatigue, biocompatibility, etc. However, for rolling contact mechanism mechanical parts DLC films are needed to study for commercial benefit. Rolling contact mechanism has features on effects of cyclic motions and stresses, and also not simply sliding motions. The papers focused on the performance test of wear and corrosive resistance according to Me-DLC film thickness. And also, its thickness effect of wear analysis was carried out through the simulation of the maximum shear stress under the rolling contact surface. As the results, Me-DLC films have more potential to improve the wear resistance for high precision mechanical parts than raydent films.

Structural Integrity Evaluation of SG Tube with Surface Wear-type Defects (표면 마모결함을 고려한 증기발생기 세관의 구조건전성 평가)

  • Kim, Jong-Min;Huh, Nam-Su;Chang, Yoon-Suk;Hwang, Seong-Sik;Kim, Joung-Soo;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.12 s.255
    • /
    • pp.1618-1625
    • /
    • 2006
  • During the last two decades, several guidelines have been developed and used for assessing the integrity of a defective steam generator (SG) tube that is generally caused by stress corrosion cracking or wall-thinning phenomenon. However, as some of SG tubes are also failed due to fretting and so on, alternative failure estimation schemes are required for relevant defects. In this paper, parametric three-dimensional finite element (FE) analyses are carried out under internal pressure condition to simulate the failure behavior of SG tubes with different defect configurations; elliptical wear, tapered and flat wear type defects. Maximum pressures based on material strengths are obtained from more than a hundred FE results to predict the failure of SG tube. After investigating the effect of key parameters such as defect depth, defect length and wrap angle, simplified failure estimation equations are proposed in relation to the equivalent stress at the deepest point in wear region. Comparison of failure pressures predicted by the proposed estimation scheme with corresponding burst test data showed a good agreement.

LOW COST DEBRIS ANALYSIS FOR INDUSTRIAL MACHINERY CONDITION EVALUATION

  • Raadnui, S.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.465-466
    • /
    • 2002
  • In any mechanical system consisting of gears, shafts and/or bearings, the majority of metallic particles deposited into and carried by the lubrication system originate from the deterioration of oil-wetted working surfaces, even in proper lubrication system, due to failure mechanism (s) such as wear, fatigue and fretting corrosion. Determination of the point at which transition from normal to abnormal or to actual damage occurs has become a focus of attention in research activities for years, because it has been recognized that reliable, economic operation can be achieved through appropriate preventative measures. Known collectively from 'all size wear debris analysis' as early failure detection, the methods of testing for damage differ considerably, range from a micron or a submicron size debris analysis to Magnetic Chip Detector (MCD) ferrous debris analysis. This paper will be focused on the utilization of the low-cost analysis techniques for evaluation of industrial machinery condition.

  • PDF

Burst Pressure Evaluation for Through-Wall Cracked Tubes in the Steam Generator (관통균열이 존재하는 증기발생기 전열관의 파열압력 평가)

  • Kim, Hyun-Su;Kim, Jong-Sung;Jin, Tae-Eun;Kim, Hong-Deok;Chung, Han-Sup
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.7
    • /
    • pp.1006-1013
    • /
    • 2004
  • Operating experience of steam generators shows that the tubes are degraded by stress corrosion cracking, fretting wear and so on. These defected tubes could stay in service if it is proved that the tubes have sufficient structural margin to preclude the risk of tube bursting. This paper provides detailed plastic limit pressure solutions for through-wall cracks in the steam generator tubes. These are developed based on three dimensional(3D) finite element analyses assuming elastic-perfectly plastic material behavior. Both axial and circumferential through-wall cracks in free span and in u-bend regions are considered. The resulting limit pressure solutions are given in a polynomial form, and thus can be simply used in practical integrity assessment of the steam generator tubes.