• Title/Summary/Keyword: Fretting contact

Search Result 93, Processing Time 0.03 seconds

A Study on the Sliding/Impact Wear of a Nuclear Fuel Rod in Room Temperature Air:(I) Development of a Test Rig and Characteristic Analysis (상온 핵연료봉 미끄럼/충격 마멸특성연구:(I) 장치개발 및 특성분석)

  • Lee, Young-Ho;Lee, Kang-Hee;Kim, Hyung-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1859-1863
    • /
    • 2007
  • A new type of a fretting wear tester has been designed and developed in order to simulate the actual vibration behavior of a nuclear fuel rod for springs/dimples in room temperature. When considering the actual contact condition between fuel rod and spring/dimple, if fretting wear progress due to the flow-induced vibration (FIV) under a specific normal load exerted on the fuel rod by the elastic deformation of the spring, the contacting force between the fuel rod and dimple that were located in the opposite side should be decreased. Consequently, the evaluation of developed spacer grids against fretting wear damage should be performed with the results of a cell unit experiments because the contacting force is one of the most important variables that influence to the fretting wear mechanism. Therefore, it is necessary to develop a new type of fretting test rig in order to simulate the actual contact condition. In this paper, the development procedure of a new fretting wear tester and its performance were discussed in detail.

  • PDF

A Study for Improvement of Cornering Fatigue Test by Eliminating a Fretting Effect on Steel Wheel to enhance Durability and Reliability (스틸 휠 굽힘 모멘트 내구시험의 내구신뢰성 개선에 대한 연구 - 스틸 휠 접촉면의 프랫팅 제거 -)

  • Chung, Soo-Sik;Jung, Won-Wook;Yoo, Yeon-Sang;Kang, Woo-Jong;Kim, Dae-Sung;Kwon, Il-Ki
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1326-1330
    • /
    • 2008
  • The failure mode of steel road wheels in a vehicle is cracks from ventilation hole through to contact plane on steel wheel's disc plate. But a number of cracks of Cornering Fatigue Limit Test is on contact plane near to wheel nut mounting area, even though it's satisfied with specified cycles. So this paper searches out causes to improve durability and reliability of C.F.T by uni-axial bending moment test. The verified cause is a "fretting" on contact area of steel wheel. In result, this paper suggests a solution to prevent a fretting by inserting a damping shim, 0.7mm between steel wheel contact areas. Therefore this paper makes it possible to move crack position of C.F.T in steel wheel from contact plane to vehicle's failure mode.

  • PDF

Analysis of Two-Dimensional Fretting Wear Using Substructure Method (부분구조법을 이용한 2차원 프레팅 마모 해석)

  • Bae, Joon-Woo;Chai, Young-Suck;Lee, Choon-Yeol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.7 s.262
    • /
    • pp.784-791
    • /
    • 2007
  • Fretting, which is a special type of wear, is defined as small amplitude tangential oscillation along the contacting interface between two materials. In nuclear power plants, fretting wear caused by flow induced vibration (FIV) can make a serious problem in a U-tube bundle in steam generator. In this study, substructure method is developed and is verified the feasibility for the finite element model of fretting wear problems. This method is applied to the two-dimensional finite element analyses, which simulate the contact behavior of actual tube to support. For these examples, computing time can be reduced up to 1/5 in comparisons with conventional finite element analyses.

Development of Fuel Rod Fretting Wear Tester (핵연료봉 프레팅마멸 시험기 개발)

  • 김형규;하재욱;윤경호;강흥석;송기남
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.245-251
    • /
    • 2001
  • A fretting wear tester is developed for experimental study on the fuel fretting problem of light water reactor. The feature of the developed tester is it can simulate the existence of gap between spring and fuel rod as well as different contacting force including the just-contact condition (0 N on the contact). Used are a servo-motor, an eccentric cylinder and lever mechanism for driving system. A spacer grid cell is constituted with four strap segments (each segment has a spring). This fretting wear tester can also be used as a fatigue tester of a spacer grid spring with the frequency of more than 10 Hz. It is required to simulate the frequency of the vibrating fuel rod due to flow-induced vibration in a reactor. In fretting wear test, up to two span-length of a fuel cladding tube can be accommodated. A specimen of cladding tube of one span-length is specially designed, which can be extended for two-span test. For .fatigue test, a device for clamping the spring fixture is installed additionally, Presently, the tester is designed for the condition of air environment and room temperature. The variation of the reciprocal distance is measured to check the stability of input force, which will be exerted to the cladding (for fretting wear. test) and the spring (for fatigue test) specimen.

  • PDF

Wear Mechanism of Tube Fretting Affected by Support Shapes

  • Kim, Hyung-Kyu;Lee, Young-Ho;Yoon, Kyung-Ho;Kang, Heung-Seok;Song, Kee-Nam;Ha, Jae-Wook
    • KSTLE International Journal
    • /
    • v.3 no.1
    • /
    • pp.68-73
    • /
    • 2002
  • A fretting wear experiment in roam temperature air was performed to evaluate the wear mechanism of fuel rod using a fretting wear tester, which has been developed for experimental study, The main focus was to compare the wear behaviors of fuel rod against support springs with different contact contours (i.e. concave and convex). Wear volume, degree or surface hardening and adhesion tendency of wear particle were examined by the surface roughness tester. The result indicated that with a change of contact condition from contact force of 5 N to 0.1 mm gap, the wear volume of tube increased in the condition of concave spring, but slowly decreased in convex spring. From the results of SEM observation, wear mechanism of each test condition was also dependent on the spring shapes. The wear mechanism of each test condition in room temperature air is discussed.

A Study on the Characteristics of the Tube-to-Support Dynamic Impact Force Measurement Facility (튜브와 지지대 사이의 동적상호 충격력 측정장치 특성규명에 관한 연구)

  • 김일곤;박진무
    • Journal of KSNVE
    • /
    • v.5 no.1
    • /
    • pp.95-106
    • /
    • 1995
  • Flow-induced vibration in heat exchanger (or fuel rod) in nuclar power plant can cause dynamic interactions between tubes and tube supports resulting in fretting-wear. To increase the reliability and design life of heat exchanger components, design criteria that establish acceptable limits of vibration and minimize fretting wear are necessary. The fretting-wear rate is dependent upon material combination, contact configuration, environmental conditions and tube-to tube support dynamic interaction. It is demostrated that the fretting -wear rate correlates well with tube-to-support contact force or work rate. The tube-to-support dynamic interaction, which consists of dynamic contact forces and tube motion, is used to relate single-span wear data to real heat exchanger configurations consisting of multi-span tube bundles. This paper describes the test facility to measure tube-to-support dynamic impact force and reports its dynamic characteristics through the four impact tests - a force transduces independent and external impact tests, central ring inside impact test and additional cylinder impact test. Through the tests the impact parameter change dependent upon the material difference of impacting ball is studied, and the impact parameters of Force Transducer Assembly components are measured. And also the dynamic behavior of Force Transducer Assembly is analyzed. The force measurement technique herein is shown to provide a reasonable measure of dynamic contact forces.

  • PDF

An experimental study on the fretting fatigue crack behaviour of A12024-T4 (A12024-T4의 프레팅 피로균열거동에 관한 실험적 연구)

  • Lee, Bong-Hun;Lee, Sun-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.3
    • /
    • pp.511-518
    • /
    • 1997
  • The technique of fretting fatigue test was developed and fretting fatigue tests of A12024-T4 were conducted under several conditions. The newly developed calibration methods for measuring surface contact tractions showed good linearity and repeatability. The plate type specimen to which tow bridge type pads were attached and vision system was used to observe the crack behaviour. The oblieque cracks appeared in the early stage of crack growth and they became mode I cracks as they grow about 1 mm. The mode I transition points were found to be longer when surface tractions are higher or bulk stress is lower. Before the crack becomes mode I crack, 'well point' where crack grow about rate is minimum, was detected under every experimental condition. The crack behaviour was found to be affected by surface tractions, contact area, bulk stress. It was also found that partial slip and stick condition is most detrimental and the crack starts from the boundary of stick and slip. For gross slip crack started at the outside edge of pad. After crack mode transition, fretting fatigue cracks showed almost same behaviour of plain mode I fatigue cracks. Equivalent stress intensity factor was used to analyze the behaviour of fretting fatigue cracks and it was found that stress intensity factors can be applied to fretting fatigue cracks.

Fretting Corrosion Behavior of Tin-plated Electric Connectors with Variation in Temperature (온도변화에 따른 주석 도금한 전기 커넥터의 미동마멸 부식 거동)

  • Oh, Man-Jin;Kang, Se-Hyung;Lee, Man-Suk;Kim, Ho-Kyung
    • Tribology and Lubricants
    • /
    • v.30 no.3
    • /
    • pp.146-155
    • /
    • 2014
  • In this study, we conduct fretting corrosion tests on tin-plated brass coupons to investigate the effect of temperature on fretting corrosion for various span amplitudes. We prepare a coupled fretting corrosion specimens using a tin-plated brass coupon with a thickness of $10{\mu}m$. One specimen is a flat coupon and the other specimen is a coupon with a protuberance in 1 mm radius, which is produced using 2 mm diameter steel ball. We conduct fretting corrosion tests at $25^{\circ}C$, $50^{\circ}C$, $75^{\circ}C$, $100^{\circ}C$ by rubbing the coupled coupons together at the contact between the flat and protuberance coupons. We measure electric resistance of the contact during the fretting corrosion test period. There is increase in resistance with fretting cycles. It is found that rate of increase in electric resistance becomes faster with increase in testing temperature. Magnitude of friction coefficient increases with fretting span amplitudes. And, change in friction coefficient becomes desensitized to the increment in span amplitude. Assuming that failure cycle is the cycle with an electric resistance of $0.01{\Omega}$, we find that failure lifetime ($N_f$) decreases with increase in testing temperature. Furthermore, based on the assumption that the damage rate of the connector is inversely related to the failure cycle, we calculate the activation energy for fretting damage to be 13.6 kJ/mole by using the Arrhenius equation. We propose a method to predict failure cycle at different temperatures for span amplitudes below $30{\mu}m$. Friction coefficients generally increase with increase in span amplitude and decrease in testing temperature.

A Study on the Variation of Electric Contact Resistance Due to Change in Contact Force in a Tin-plated Connector (주석 도금한 커넥터의 접촉 하중의 변화에 의한 전기 접촉저항 변화에 관한 연구)

  • Yu, Hwan-Shin;Oh, Man-Jin;Park, Hyung-Bae
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.4
    • /
    • pp.381-386
    • /
    • 2014
  • In order to investigate the effect of contact load, which is one of the fretting corrosion factors affecting the electric connector, a coupled fretting corrosion specimens were prepared using a tin-plated brass coupon with a thickness of $3{\mu}m$. Electric resistance of the contact was measured during the fretting corrosion test period. There was increase in resistance with fretting cycles. The change in resistance can be classified by 3 stages. The first stage exhibited low and stable resistance. Second stage showed steady increment of the resistance and third stage showed very high and intermittent resistance. The relationship between the failure cycle (Nf) and contact force (P) can be drawn as; It is possible to draw the prediction equation for the failure cycle of the electric connector corresponding to the very high and intermittent resistance under various environment conditions through the fretting tests under various conditions such as load, displacement, temperature.

Experimental Study on Fatigue Crack Initiation and Propagation due to Fretting Damage in Press-fitted Shaft (압입축에 발생하는 프레팅 피로균열 발생 및 진전 특성 실험)

  • Lee, Dong-Hyong;Kwon, Seok-Jin;Choi, Jae-Boong;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.6 s.261
    • /
    • pp.701-709
    • /
    • 2007
  • To clarify the characteristics of surface damage due to fretting in press-fitted shaft, experimental methods were applied to small scale specimen with different bending load condition. Fatigue tests and interrupted fatigue tests of press-fitted specimen were carried out by rotate bending fatigue test. Macroscopic and microscopic characteristics were examined using scanning electron microscope (SEM), optical microscope or profilometer. It is found that small fatigue cracks are nucleated early in life regardless of bending stress, and thus the most portion of fatigue life on press fits can be considered to be crack propagation process. Most of surface cracks are initiated near the contact edge, and multiple cracks are nucleated and interconnected. Furthermore, the fretting wear rates at the contact edge are increased rapidly at the initial stage of total fatigue life. It is thus suggested that the fatigue crack nucleation and propagation process is strongly related to the evolution of surface profile by fretting wear in press fits.