• Title/Summary/Keyword: Fretting Wear Rate

Search Result 36, Processing Time 0.02 seconds

Fretting Wear Mechanisms of Zircaloy-4 and Inconel 600 Contact in Air

  • Kim, Tae-Hyung;Kim, Seock-Sam
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.9
    • /
    • pp.1274-1280
    • /
    • 2001
  • The fretting wear behavior of the contact between Zircaloy-4 tube and Inconel 600, which are used as the fuel rod cladding and grid, respectively, in PWR nuclear power plants was investigated in air. In the study, number of cycles, slip amplitude and normal load were selected as the main factors of fretting wear. The results indicated that wear increased with load, slip amplitude and number of cycles but was affected mainly by the slip amplitude. SEM micrographs revealed the characteristics of fretting wear features on the surface of the specimens such as stick, partial slip and gross slip which depended on the slip amplitude. It was found that fretting wear was caused by the crack generation along the stick-slip boundaries due to the accumulation of plastic flow at small slip amplitudes and by abrasive wear in the entire contact area at high slip amplitudes.

  • PDF

Wear Characteristics of Multi-Span Tube Due to Turbulence Excitation (다경간 전열관의 난류 여기에 의한 마모특성 연구)

  • Kim, Hyung-Jin;Ryu, Ki-Wahn;Park, Chi-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.919-924
    • /
    • 2005
  • Fretting-wear caused by turbulence excitation for KSNP(Korea standard nuclear power plant) steam generator is investigated numerically. Secondary sides density and normal velocity are obtained by the thermal-hydraulic data of the steam generator. Because nonlinear finite element analysis is complex and time consuming, work rate is estimated by using linear analysis for simple straight 2-span tube. Wear volume and depth by using work rate calculation are estimated. Span length, secondary side fluid density and normal velocity are adopted to study the effects on the fretting-wear by turbulence excitation. When secondary sides density and normal velocity is increased, It turns out that secondary side density and normal gap velocity are very important paramater for fretting-wear phenomena of the steam generator.

  • PDF

A Comparison of Fretting Wear Characteristics of Zircaloy-4 Tube in Light Water and in Air (경수 및 공기중에서의 지르칼로이-4 튜브의 프레팅 마멸특성 비교)

  • 조광희;김태형;김석삼
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.303-309
    • /
    • 1999
  • The fretting wear behaviour of Zircaloy-4 tube used as the fuel rod cladding in PWR nuclear power plants has been investigated at the different test environment, in light water and in air as a function of slip amplitude, normal load, test duration and frequency. Zircaloy-4 tubes were used for both of oscillating and stationary specimens. A fretting wear tester was designed to be suitable for this fretting test. The wear volume and specific wear rate of Zircaloy-4 tube in water were greater than those in air under various slip amplitude. It was found that delaminate debris and surface cracks were observed at low slip amplitude and high load in water Experimental results showed that the light water accelerated the wear of Zircaloy-4 tube at low slip amplitude in fretting.

  • PDF

Fretting Oamage Evaluation of Zircaloy-Inconel Contact (지르칼로이-인코넬 접촉에서의 프레팅 손상 평가)

  • 김태형;김석삼
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.06a
    • /
    • pp.263-268
    • /
    • 2000
  • The fretting damage of the contact between Zircaloy-4 and Inconel 600 have Investigated. A fretting wear tester was designed to be suitable for this fretting test. In this study, the number of cycles, slip amplitude and normal load were selected as main factors of fretting wear. As the result of this research the wear volume increased with the increase of loads, slip amplitudes and the number of cycles and was more affected by slip amplitudes rather than by load. According to SEM, stick, partial slip, gross slip were observed on the surface of both specimens and wavy worn surfaces as the typical fretting damage were also Investigated due to accumulation of plastic flow.

  • PDF

Comparison of Fretting Wear Characteristics of Zircaloy-4 Tube in Light Water and in Air (지르칼로이-4 튜브 프레팅 마멸 특성의 환경 의존성과 마멸기구)

  • 조광희;김석삼
    • Tribology and Lubricants
    • /
    • v.15 no.1
    • /
    • pp.83-89
    • /
    • 1999
  • The fretting wear behaviour of Zircaloy-4 tube used as the fuel rod cladding in PWR nuclear power plants has been investigated at the different test environment, in light water and in air as a function of slip amplitude, normal load, test duration and frequency. Zircaloy-4 tubes were used for both of oscillating and stationary specimens. A fretting wear tester was designed to be suitable for this fretting test. The wear volume and specific wear rate of Zircaloy-4 tube in water was greater than those in air under various slip amplitude. Delaminates and surface cracks were observed at low slip amplitude and high load of fretting test in water, but the traces of adhesion and plowing were observed at and above 200 Um. The water accelerates the wear of Zircaloy-4 tube at lower slip amplitude in fretting.

Experimental studies on the fretting wear of domestic steam generator tubes (국내 증기발생기 전열관 마열에 대한 실험적 연구)

  • Lee, Yeong-Ho;Kim, Hyeong-Gyu;Kim, In-Seop
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.304-309
    • /
    • 2002
  • Fretting wear test in room temperature water was performed to evaluate the wear coefficient of Inconel 600,690 (Pressurized Water Reactor, PWR) and Alloy 800 (CANadian DeuteriumUranium, CANDU) steam generator (SG) tubes against ferritic and martensitic stainless steels. The main focus is to compare the wear behaviors between Alloy 800 and Inconel alloys. Test conditions are $10{\sim}30N$ of normal load, $200{\sim}450{\mu}m$ of sliding amplitude and 30Hz of frequency. The result indicated that the wear rate of Alloy 800 was higher than those of Inconel 690 at various test condition such as normal loads, sliding amplitudes etc. From the results of SEM observation, there was little evidence of plastic deformation layer that were dominantly formed on the worn surfaces of Inconel 690. Also, wear particles in Alloy 800 were released from contacting asperities deformed by severe plastic flow during fretting wear. Main cause of wear rate between Alloy 800 and Inconel 690 may be due to the difference of hardness between martensitic and ferritic stainless steel. The wear rate and wear mechanism of two tubes in room temperature water are discussed.

  • PDF

A Study on Fretting-Wear Behavior of Inconel 690 due to Surrounding Temperature (주위 온도에 따른 Inconel690의 마멸 거동에 관한 연구)

  • 임민규;박동신;김대정;이영제
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.296-303
    • /
    • 2001
  • In nuclear power steam generators, high flow rates can induce vibration of the tubes resulting in fretting wear damage due to contacts between the tubes and their supports. In this paper the fretting wear tests and the sliding wear tests were performed using the steam generator tube materials of Inconel 690 against STS 304. Sliding tests with the pin-on-disk type tribometer were done under various applied loads and sliding speeds at air and water environment. Fretting tests were done under various vibrating amplitudes, applied normal loads and various temperatures. From the results of sliding and fretting wear tests, the wear of Inconel 690 can be predictable using the work rate model. Depending on normal loads and vibrating amplitudes, distinctively different wear mechanisms and often drastically different wear rates can occur. At room temperature, the wear coefficient K of Inconel 690 is 7.57${\times}$10$\^$13/Pa$\^$1/ in air and it is 1.93${\times}$10$\^$13/Pa$\^$1/ in water. At room temperature, it is found that the wear volume in air is more than in water. In water, the wear coefficient K at 50$^{\circ}C$ and 80$^{\circ}C$ is 4.35${\times}$10$\^$-13/Pa$^1$ and 5.81${\times}$10$\^$-13/Pa$^1$ respectively, Therefore, it is found that the wear volume extremely increases by increasing on temperature in water. This study shows that the dissolved oxygen with temperature increment increases and the wear due to fluidity is severe.

  • PDF

Analysis of Two-Dimensional Fretting Wear Using Substructure Method (부분구조법을 이용한 2차원 프레팅 마모 해석)

  • Bae, Joon-Woo;Chai, Young-Suck;Lee, Choon-Yeol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.7 s.262
    • /
    • pp.784-791
    • /
    • 2007
  • Fretting, which is a special type of wear, is defined as small amplitude tangential oscillation along the contacting interface between two materials. In nuclear power plants, fretting wear caused by flow induced vibration (FIV) can make a serious problem in a U-tube bundle in steam generator. In this study, substructure method is developed and is verified the feasibility for the finite element model of fretting wear problems. This method is applied to the two-dimensional finite element analyses, which simulate the contact behavior of actual tube to support. For these examples, computing time can be reduced up to 1/5 in comparisons with conventional finite element analyses.

Friction and Wear of Inconel 690 for Steam Generator Tube in Fretting (증기발생기 세관용 Inconel 690 의 프레팅 마찰 및 마멸특성)

  • Lee, Young-Ze;Lim, Min-Kyu;Oh, Se-Doo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.3
    • /
    • pp.432-439
    • /
    • 2003
  • Inconel 690 for nuclear steam generator tube has more Chromium than the conventionally used Inconel 600 in order to increase the corrosion resistance. To evaluate the tribological characteristics of Inconel 690 under fretting condition the fretting tests were carried out in air and elevated temperature water. Fretting tests of the cross-cylinder type were done under various vibrating amplitudes and applied normal loads in order to measure the friction forces and wear volumes. From the results of fretting wear tests. the wear of Inconel 690 can be predictable using the work rate model. The amounts of friction forces were proportional to relative movement between two fretting surfaces. The friction coefficients were decreased as increasing the normal loads and deceasing the vibrating amplitudes. Depending on fretting environment, distinctively different wear mechanisms and often drastically different wear rates can occur It was found that the fretting wearfactors in air and water at 2$0^{\circ}C$, 5$0^{\circ}C$, and 8$0^{\circ}C$ were 7.38 $\times$ $10^{-13}$$Pa^{-1}$, 2.12 $\times$$10^{-13}$$Pa^{-1}$, 3.34$\times$$10^{-13}$$Pa^{-1}$and 5.21$\times$$10^{-13}$$Pa^{-1}$, respectively flexibility to model response data with multiple local extreme. In this study, metamodeling techniques are adopted to carry out the shape optimization of a funnel of Cathode Ray Tube, which finds the shape minimizing the local maximum principal stress. Optimum designs using two metamodels are compared and proper metamodel is recommended based on this research.

Characterization of Contact Surface Damage in a Press-fitted Shaft below the Fretting Fatigue Limit (피로한도 이하에서 발생하는 압입축의 접촉손상 특성)

  • Lee, Dong-Hyong;Kwon, Seok-Jin;Ham, Young-Sam;You, Won-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.8
    • /
    • pp.42-47
    • /
    • 2010
  • In this paper, the characteristics of contact surface damage due to fretting in a press-fitted shaft below the fretting fatigue limit are proposed by experimental methods. A series of fatigue tests and interrupted fatigue tests of small scale press-fitted specimen were carried out by using rotating bending fatigue test machine. Macroscopic and microscopic characteristics were examined using scanning electron microscope (SEM), optical microscope or profilometer. It is found that fretting fatigue cracks were initiated even under the fretting fatigue limit on the press-fitted shafts by fretting damage. The fatigue cracks of press-fitted shafts were initiated from the edge of contact surface and propagated inward in a semi-elliptical shape. Furthermore, the fretting wear rates at the contact edge are increased rapidly at the initial stage of total fatigue life. After steep increasing, the increase of wear rate is nearly constant under the load condition below the fretting fatigue limit. It is thus suggested that the fretting wear must be considered on the fatigue life evaluation because the fatigue crack nucleation and propagation process is strongly related to the evolution of surface profile by fretting wear in the press-fitted structures.