• Title/Summary/Keyword: Freshwater red

Search Result 75, Processing Time 0.023 seconds

Environmental factors Affecting Distribution of Heterotrophic Bacteria and Chlorophyll a Content in The (마산만과 행암만 수층의 종속양양세균과 엽록소 a 함량 분포에 미치는 환경요인)

  • Sohn Jae-Hak;Ahn Tae-Young;Kim Sang -Jin
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.3 no.4
    • /
    • pp.65-75
    • /
    • 2000
  • The roles of environmental factors affecting on heterotrophic bacterial distribution at Hangam Bay and Masan Bay in which occurred frequently red tide, during June to November 1996 were investigated. The aquatic environment of Masan Bay and Haengam Bay showed difference in the contents of inorganic nutrients. Haengam Bay may be defined as nitrogen limited aquatic environment. On the other hand, Masan Bay appeared to the appropriate N/P molar ratio of mean 15.9 during the periods of study. By the results of simple regression, chlorophyll a showed significant correlation with precipitation (r=0.813, P<0.05) and phosphorus (r=0.846, P<0.05) at Haengam Bay, but not showed significant correlation with parameters at Masan Bay. The heterotrophic bacteria showed significant correlation with many environmental parameters at Masan Bay (Precipitation, r=0.990, P<0.01 : NO₃-N, r=0.901, P<0.05 : Dissolved inorganic nitrogen, r=0.899, P<0.05 ; N/P molar ratio, r=0.952, P<0.05 : Salinity, r: -0.934, P<0.05) than Haengam Bay (SiO₃-Si, r=0.960, P<0.01). By the results of multiple regression, the chlorophyll a was varied with only 2 factors in Masan Bay (R²=0.100) and 3 factor in Haengam Bay (R²=0.903). The major factor which affected to chlorophyll a was SiO₃-Si (R²%=67.8) in Masan Bay, and -N/P (R²%=37.6) in Haengam Bay. The heterotrophic bacteria were varied with 4 factors in Masan Bay (R²=100) and 2 factor in Haengam Bay (R²%=0.878). The major factor, which affected to heterotrophic bacteria, was SiO₃-Si (R²%=42.3) and salinity (R²%=32.1) in Masan Bay, and SiO₃-Si (R²%=76.3) in Haengam Bay. Resultingly, the influx of freshwater in Masan and Haengam Bay was enriched in inorganic nutrients, and plays an important role in the change of heteroterophic bacteria and chlorophyll a during early summer to autumn.

  • PDF

Effect of Chlorella vulgaris CHK0008 Fertilization on Enhancement of Storage and Freshness in Organic Strawberry and Leaf Vegetables (Chlorella vulgaris CHK0008 시비가 유기농 딸기와 엽채소의 저장성과 신선도 향상에 미치는 영향)

  • Kim, Min-Jeong;Shim, Chang-Ki;Kim, Yong-Ki;Park, Jong-Ho;Hong, Sung-Jun;Ji, Hyeong-Jin;Han, Eun-Jung;Yoon, Jung-Chul
    • Horticultural Science & Technology
    • /
    • v.32 no.6
    • /
    • pp.872-878
    • /
    • 2014
  • This study aimed to enhance storage and freshness of strawberry fruits and foliage vegetables by spray treatment with Chlorella vulgaris as a bio-fertilizer. The tested strain, C. vulgaris CHK0008, was isolated from an organically cultivated rice paddy and identified as C. vulgaris by its morphology and 18S rDNA and 23S rDNA sequence homology. We successfully cultured C. vulgaris CHK0008 in BG11 modified medium (BG11MM) and adjusted $2.15{\times}10^6cell/mL$ C. vulgaris CHK0008 to one OD value by measuring the optical density at 680 nm using a UV-vis spectrophotometer. The soluble solid content of 'Seolhyang' and 'Yukbo' strawberry fruits treated by spray application with C. vulgaris CHK0008 was enhanced by 22.2% and 11.5% respectively, compared to untreated controls. Additionally, the decay rates of treated 'Seolhyang' and 'Yukbo' strawberry fruits decreased 63.8% and 74.4% respectively, compared to untreated control. Surface color changes and chlorosis of leaves in leaf vegetables such as lettuce, kale, red ornamental kale, white ornamental kale and beet were observed in samples treated with water spray for 10 days after cold storage. However, the decay rate of leafy vegetables treated with foliar application of 25% C. vulgaris CHK0008 liquid culture was significantly decreased compared to that of the untreated control during storage at $4^{\circ}C$.

An Evaluation of Aquatic Environment in the Okchon Stream-Embayment Watershed, Korea (옥천천 (만) 유역 하천과 만입부의 수환경 평가)

  • Kim, Dong-Sup;Lee, Hye-Keun;Maeng, Sung-Jin;Hwang, Soon-Jin;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.2 s.103
    • /
    • pp.181-190
    • /
    • 2003
  • An investigation was conducted on the aquatic environment of the Okchon Stream watershed six times from May to September 2002. The results of investigation revealed that variation of environmental factors were quite significant for each stream and reach, showing a significant difference between running water and stagnant water. Aquatic nutrients were relatively low in the upstream, gradually increasing as the influx of treated wastewater into the stream increased. This suggests that the point source definitely affected the nutrient content of the stream. In particular, the variations of SRP and $NH_4$ were very distinct in the watershed compared to other nutrients. Thus, it can be considered as a major factor in evaluating the effect of treated wastewater. Immediately after the influx of treated waste-water, the average content of SRP rose to 919.3 ${\mu}g$ P/l. This was a very effective level in the watershed, suggesting that the percentage of the nutrients in the water was controlled by the content of P. The constant supply of treated wastewater was found to be a critical factor in triggering the increase in chl-a in the embayment of the stream. With the proliferation of the blue-green algae, the content of chl- a ranged 234.5${\sim}$1,692.2 ${\mu}g/l$. The maximum standing crops exceeded $1.0{\times}10^6$ cells/ml in August, which was more than 200 times the level for red tide in the freshwater. This result was well reflected in other environmental factors, with 100% of AFDM/TSS reflecting the severity of water pollution by algae. Therefore, the reduction of P and N con-tents in the treated wastewater is critical in improving the aquatic environment of the stream as well as water quality management for the reservoir.

Distribution Status of Invasive Alien Species (Procambarus clarkii (Girard, 1852)) Using Biomonitoring with Environmental DNA in South Korea (생물모니터링 및 환경유전자(eDNA)를 이용한 침입외래종 미국가재(Procambarus clarkii)의 한국분포 현황)

  • Jung, Sang Woo;Lee, Jae-Ha;Kawai, Tadashi;Kim, Phil-Jae;Kim, SuHwan
    • Korean Journal of Environment and Ecology
    • /
    • v.36 no.4
    • /
    • pp.368-380
    • /
    • 2022
  • Biomonitoring of an invasive alien crayfish species, Procambarus clarkii (Girard, 1852), was performed from February to October 2021, along with environmental DNA analysis, at five locations including Wanju-gun, Hampyeong-gun, Naju-si, Gurye-gun, and Cheongju-si. For the investigation, an umbrella-shaped trap for adults and a hand net for young crayfish were used, and 8 to 10L of freshwater was collected for eDNA analysis. The current status and past distributional records of crayfish in Korea were analyzed along with benthic macroinvertebrates at each survey site. As a result of the investigation, a total of 122 individuals were identified, and Hampyeong-gun recorded the largest number of populations with 59 individuals (48.36%) and the highest environmental DNA (eDNA). The frequency of appearance of P. clarkii was highest in May. The ratio of females to males was 21:5, and the body size was 72.2±21.1mm for female, 80.5±15.6mm for male, and 25.3±9.8mm for young crayfish. P. clarkii introduced into Korea is mainly spreading in the southwest region and it has not been observed in Seoul where there had been a record of appearance in the past. No external symbiosis (Branchiobdellida) of P. clarkii has been identified, and P. clarkii that has appeared in Korea was presumed to be imported from Japan. There are more than eight kinds of exotic crayfish distributed in Korea, and among them, the marbled crayfish (P. virginalis) was identified as a harmful species to the ecosystem of Korea by the Ministry of Environment in 2021. The identified species of benthic macroinvertebrates inhabiting the survey area where P. clarkii has appeared were 69 belonging to 39 families, 15 orders, five classes, and three phyla. Among them, Odonata were the most abundant (16 spp.; 24.62%), followed by Coleoptera (11 spp.; 16.92%) and Hemiptera (11 spp.; 16.92%). In the survey area, one Korean endemic species (Rhoenanthus coreanus), one species (Helophorus auriculatus) classified as Near Threatened (NT) on the Korean Red List, and six species of Crustaceans appeared. In the functional feeding group, the predators appeared predominantly while in habitat oriented group, the climbers appeared to be abundant. It was confirmed that P. clarkii in the survey area prefers an area rich in aquatic vegetation with waterside vegetation, and has high resistance to turbid water quality. The omnivore invader P. clarkii is expected to maintain a competitive relationship with carnivorous benthic macroinvertebrates that are predominant in the same species, and is expected to continue to generate ecosystem disturbance along the food chains.

Seasonal Circulation and Estuarine Characteristics in the Jinhae and Masan Bay from Three-Dimensional Numerical Experiments (3차원 수치모의 실험을 통한 진해·마산만의 계절별 해수순환과 염하구 특성)

  • JIHA KIM;BYOUNG-JU CHOI;JAE-SUNG CHOI;HO KYUNG HA
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.29 no.2
    • /
    • pp.77-100
    • /
    • 2024
  • Circulation, tides, currents, harmful algal blooms, water quality, and hypoxic conditions in Jinhae-Masan Bay have been extensively studied. However, these previous studies primarily focused on short-term variations, and there was limited detailed investigation into the physical mechanisms responsible for ocean circulation in the bays. Oceanic processes in the bays, such as pollutant dispersal, changes on a seasonal time scale. Therefore, this study aimed to understand how the circulation in Jinhae-Masan Bay varies seasonally and to examine the effects of tides, winds, and river discharges on regional ocean circulation. To achieve this, a three-dimensional ocean circulation model was used to simulate circulation patterns from 2016 to 2018, and sensitivity experiments were conducted. This study reveals that convective estuarine circulation develops in Jinhae and Masan Bays, characterized by the inflow of deep oceanic water from the Korea Strait through Gadeoksudo, while surface water flows outward. This deep water intrusion divides into northward and westward branches. In this study, the volume transport was calculated along the direction of bottom channels in each region. The meridional water exchange in the eastern region of Jinhae Bay is 2.3 times greater in winter and 1.4 times greater in summer compared to that of zonal exchange in the western region. In the western region of Jinhae Bay, the circulation pattern varies significantly by season due to changes in the balance of forces. During winter, surface currents flow southward and bottom currents flow northward, strengthening the north-south convective circulation due to the combined effects of northwesterly winds and the slope of the sea surface. In contrast, during summer, southwesterly winds cause surface seawater to flow eastward, and the elevated sea surface in the southeastern part enhances northward barotropic pressure gradient intensifying the eastward surface flow. The density gradient and southward baroclinic pressure gradient increase in the lower layer, causing a strong westward inflow of seawater from Gadeoksudo, enhancing the zonal convective circulation by 26% compared to winter. The convective circulation in the western Jinhae Bay is significantly influenced by both tidal current and wind during both winter and summer. In the eastern Jinhae Bay and Masan Bay, surface water flows outward to the open sea in all seasons, while bottom water flows inward, demonstrating a typical convective estuarine circulation. In winter, the contributions of wind and freshwater influx are significant, while in summer, the influence of mixing by tidal currents plays a major role in the north-south convective circulation. In the eastern Jinhae Bay, tidally driven residual circulation patterns, influenced by the local topography, are distinct. The study results are expected to enhance our understanding of pollutant dispersion, summer hypoxic events, and the abundance of red tide organisms in these bays.