• Title/Summary/Keyword: Freshwater Discharge

Search Result 170, Processing Time 0.029 seconds

담수호 저층배수시설 방류구 위치선정을 위한 저층방류수 해양수중 혼합특성해석

  • Park, Yeong-Wook;Khu, Bon-Chung;Kwun, Soon-Kuk
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.272-277
    • /
    • 2005
  • Initial mixing characteristics in near field regions were analyzed by FLOW-3D, for analyzing mixing behavior of submerged discharge from freshwater lake in sea water. FLOW-3D model was applied to the region near Geum-ho dike for its verification. Simulation results from FLOW-3D were compared to the observed data for the verification periods. FLOW-3D showed resonable prediction results compared to the observed data, except underestimation in area near outfall. Particularly, FLOW-3D showed a good prediction for movement of buoyancy jets. In addition, FLOW-3D model was applied to the region near Saemangeum dike, which is to be constructed in near future. It was expected that the results of model application to Saemangeum area could provide substantial information in planning submerged discharge facilities. Based on the model applications to Saemangeum area, it was recommended that outfall should be located to the distance which gave an enough depth of outfall from water surface.

  • PDF

Estimation of material budget for Keum river estuary using a Box Model (BOX 모델을 이용한 금강 하구해역의 물질수지 산정)

  • Kim Jong-Gu;Kim Dong-Myung;Yang Jae-Sam
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.3 no.4
    • /
    • pp.76-90
    • /
    • 2000
  • The estimation of material cycle of pollutants is necessary for the environment management in coastal zone. Model for material budgets are useful tools to understand the phenomena of natural system and to provide an insight into the complex processes including physical, chemical and biological processes occuring in natural system. Budgets of fresh water, salt and nutrients were estimated in order to clarify the characteristics of seasonal material cycle in Keum river estuary. Inflow volumes of freshwater into system was approximately 1.014×10/sup 8/~12.565×10/sup 8/m³/month and discharge in Keum river has occupied 99.7% of total freshwater. Seasonal variations of freshwater volume in the system were found to be very high in the range of about 4 ~ 14 times due to rainfall in summer season. Existing water mass of freshwater in system calculated by salt budget was approximately 0.339×10/sup 8/~0.652×10/sup 8/m³. Mean residence time of freshwater was calculated to be about 1.6~10.0day, and exchange time was calculated to be about 2.2~11.9day. Mean residence time was short as 1.6day in summer due to precipitation, and long as 10.1day in winter due to a drought. Inflow masses of DIP and DIN were approximately 5.57~32.68ton/month and 234.93~2,373.39ton/month, respectively. Seasonal inflow mass of DIP was larger than the outflow mass except for summer season. Thus, we postulate that accumulation of DIP in the system will happen. Residence times of DIP and DIN were calculated to be 1.1~6.4day and 1.8~10.9day, respectively. The ratio of water residence time versus DIP, DIN residence time was calculated to be 0.39~2.31 times and 0.83~1.13 times, respectively.

  • PDF

Semiweekly variation of Spring Phytoplankton Community in Relation to the Freshwater Discharges from Keum River Estuarine Weir, Korea (금강하구언 담수방류와 춘계 식물플랑크톤 군집의 단주기 변동)

  • Yih, Won-Ho;Myung, Geum-Og;Yoo, Yeong-Du;Kim, Young-Geel;Jeong, Hae-Jm
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.10 no.3
    • /
    • pp.154-163
    • /
    • 2005
  • Irregular discharges of freshwater through the water gates of the Keum River Estuarine Weir, Korea, whose construction had been completed in 1998 with its water gates being operated as late as August 1994, drastically modified the estuarine environment. Sharp decrease of salinity along with the altered concentrations of inorganic nutrients are accompanied with the irregular discharges of freshwater into the estuary under the influence of regular semi-diurnal tidal effect. Field sampling was carried out on the time of high tide at 2 fixed stations(St.1 near the Estuarine Weir and St.2 off Kunsan Ferry Station) every other day for 4 months from mid-February 2004 to investigate into the semi-weekly variation of spring phytoplankton community in relation to the freshwater discharges from Keum River Estuarine Weir. CV(coefficient of variation) of salinity measurements was roughly 2 times greater in St.1 than that in St.2, reflecting extreme salinity variation in St.1 Among inorganic nutrients, concentrations of N-nutrients($NO_3^-,\;NO_2^-$ and $NH_4^+$) were clearly higher in St.1, to imply the more drastic changes of the nutrient concentrations in St.1. than St.2 following the freshwater discharges. As a component of phytoplankton community, diatoms were among the top dominants in terms of species richness as well as biomass. Solitary centric diatom, Cyclotella meneghiniana, and chain-forming centric diatom, Skeletonema costatum, dominated over the phytoplankton community in order for S-6 weeks each (Succession Interval I and II), and the latter succeeded to the former from the time of <$10^{\circ}C$ of water temperature. Cyanobacterial species, Aphanizomenon Posaquae and Phormidium sp., which might be transported into the estuary along with the discharged freshwater, occupied high portion of total biomass during Succession Interval III(mid-April to late-May). During this period, freshwater species exclusively dominated over the phytoplankton community except the low concentrations of the co-occurring 2 estuarine diatoms, Cyclotella meneghiniana and Skeletonema costatum. During the 4th Succession Interval when the water temperature was over $18^{\circ}C$, the diatom, Guinardia delicatula, was predominant for a week with the highest dominance of $75\%$ in discrete samples. To summarize, during all the Succession Intervals other than Succession Interval III characterized by the extreme variation of salinity under cooler water temperature than $18^{\circ}C$, the diatoms were the most important dominants for species succession in spring. If the scale and frequency of the freshwater discharge could have been adjusted properly even during the Succession Interval III, the dominant species would quite possibly be replaced by other estuarine diatom species rather than the two freshwater cyanobacteria, Aphanizomenon flosaquae and Phormidium sp.. The scheme of field sampling every other day for the present study was concluded to be the minimal requirement in order to adequately explore the phytoplankton succession in such estuarine environment as in Keum River Estuary: which is stressed by the unpredictable and unavoidable discharges of freshwater under the regular semi-diurnal tide.

Modification of Tide in Keum River by the River Discharge (하천유량의 증가(增加)에 따른 금강조석(錦江潮汐)의 변화(變化))

  • Choi, Byung Ho;Lee, Jung Lyul;Oh, Yeun Kun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.3
    • /
    • pp.121-132
    • /
    • 1987
  • The estuarine tide becomes strongly distorted as it propagates into upstream reach of tidal river system common to the west and south coasts of Korea. This distortion can be represented by friction, non-linear advection, interaction with channel geometry and freshwater discharge. In the present paper, the effect of an increased river discharge on tide progressing into the Keum River is evaluated quantitatively by one-dimensional hydrodynamic model. The computed relation between the prevailing discharges and the tide reaching the upper reaches of the river, both its range and its timing has shown that there are good agreement with theoretical inferences of Godin(1985).

  • PDF

Estimation of Pollution Loads from the Yeongsan River Basin using a Conceptual Watershed Model (개념적 유역모델을 이용한 영산강 유역 오염부하 유출량의 시공간적 분포평가)

  • Park, Min-Hye;Cho, Hong-Lae;Koo, Bhon-Kyoung
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.2
    • /
    • pp.184-198
    • /
    • 2014
  • For estimating discharge and pollution loads into the Yeongsan lake, a conceptual watershed model HSPF(Hydrological Simulation Program - Fortran) was applied to the Yeongsan River Basin. Various spatial data set including DEM, watershed boundaries and land uses were used to set up the model for the Yeongsan River Basin that was divided into 45 sub-basins. The model was calibrated and validated for the river discharges, SS, BOD, TN and TP concentrations against the data observed in 2011 at several monitoring stations. The simulation results show good agreement with the observed water flows($R^2$ = 0.46 - 0.97, NSE = 0.70 - 0.96). The simulated concentrations of SS, BOD, TN and TP are also in good agreement with the observed. The total freshwater discharge to the Yeongsan lake is estimated $2,406{\times}10^6m^3/year$ which the Jiseok and Hwangryoung stream contribute as much as 19%, 17% respectively. It is estimated that the total discharges to the Youngsan lake is SS 152,327 ton/year, BOD 15,721 ton/year, TN 10,071 ton/year, TP 563 ton/year. Both water and pollution loads are high in summer, particularly in July, when the monsoon season arrives at the Korean peninsula.

Fresh water impact on chlorophyll a distribution at northeast coast of the Bay of Bengal analyzed through in-situ and satellite data

  • Mishra, R.K.;Senga, Y.;Nakata, K.
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.122-125
    • /
    • 2006
  • The distribution of phytoplankton pigments were studied bimonthly at four stations from the mouth of Mahanadi River at Paradip to the 36.7km off coast in Bay of Bengal during April 2001 to December 2002. Bottom depth was shallower than 40m in all stations. The pigment concentration of Chl-a was measured. It increased from surface to bottom in the water column. The water column integrated chlorophyll-a concentration (Chl-a) varied between 6.1 and $48.5mg{\cdot}m-^2$ with peaks during monsoon period (Aug & Oct). Spatial distribution of salinity depended strongly on freshwater runoff. The salinity was 5psu at river mouth and 25.15psu at offshore in monsoon period; however it was 30psu at the river mouth in summer. We found a linear relationship between the amount of river discharge and integrated Chl-a in coastal region from 2 years observations. Extending this result, we analyzed rainfall and coastal Chl-a using satellite data. The relationship between the river discharge and monthly accumulated rainfall estimated from TRMM and others data sources was analyzed in 2001 and 2002 using Giovanni infrastructure provided by NASA. The result depended on the specified area on TRMM images; the river delta area had sharper relationship than wider rain catchments area. Moreover, the relationship between monthly averaged Chl-a derived from SeaWiFS and monthly accumulated rainfall estimated from TRMM was analyzed from 1998 to 2005. It was clear that the broom in monsoon period was strongly controlled by rainfall on river delta.

  • PDF

Tidal Influence on Physical Parameters and Phytoplankton Size Structure in Youngsan River Estuary during Neap Tide (조석에 따른 영산강 하구의 물리적 환경 및 식물플랑크톤 크기구조: 소조기)

  • Park, Geon-Woo;Lee, Da-Hye;Shin, Yongsik
    • Journal of Environmental Science International
    • /
    • v.26 no.3
    • /
    • pp.325-334
    • /
    • 2017
  • To understand the changes in physical parameters and phytoplankton size structure caused by tides, a fixed station in the Youngsan River estuary was monitored at 2-h intervals, on April 28, 2012 and August 12, 2012. No clear relationship was observed between the temperature and salinity changes and tidal levels in April. However, in August, temperature decreased during the ebb tide and increased during the flood tide, while salinity showed the opposite trend. In addition, there was no specific change in the phytoplankton biomass corresponding to tidal levels in April. In August, the total chlorophyll a and the biomass of net phytoplankton (>$20{\mu}m$) increased almost 20 times during the ebb tide and decreased during the flood tide. The biomass of nanophytoplankton (<$20{\mu}m$) showed a similar variation in response to tidal level changes. In April, the relationship between percent contributions of phytoplankton size structure and tidal levels was not clear. In August, the net phytoplankton was dominant in the early stage and nanophytoplankton was dominant in the later stage, while contribution of nanophytoplankton and net phytoplankton increased at high tide and low tide, respectively. Therefore, in April, other factors such as freshwater discharge were more important than the tide, whereas in August, when no freshwater discharge was recorded, the changes in semidiurnal tides influenced the physical parameters and phytoplankton dynamics. These results could contribute to the understanding of phytoplankton dynamics in the Youngsan River estuary.

The Ecological Study of Phytoplankton in Kyeonggi Bay, Yellow Sea 1. Environmental Characteristics (西海 京畿 植物 플랑크톤에 對한 생態學的 硏究 I. 京畿 의 環境特性)

  • 최중기;심재형
    • 한국해양학회지
    • /
    • v.21 no.1
    • /
    • pp.56-71
    • /
    • 1986
  • In order to clarify the influence of environmental factors on the phytoplankton cmmunity in Kyeonggi Bay, the hydrological and water quality data were obtained from 20cruises from May, 1981, to September, 1982 in this bay. Physical conditions at the mouth of the bay are more stable than those at the head of the bay. Temperatures and salinities of the upper part of the bay show great seasonal fluctuations due to the river discharge. By the extending effects of freshwater, a weak two-layer flow system is formed from the upper part of the bay to Palmi Island. In summer thermal stratification are formed in the middle and outer parts of the bay. In winter, However, the temperature shows no vertical temperature gradient. The inner bay and the vicinity area of Incheon Harbour are relatively polluted and eutrophicated due to both the runoff of freshwater from the Han River and the waste discharge from Incheon industrial complex. However, except the polluted area, the study areas are well oxygenated with more than 90% saturation.

  • PDF

GIS- Based Predictive Model for Measure of Environmental Pollutant (GIS를 이용한 환경오염의 예측 모델)

  • Lee, Ja-Won
    • Journal of the Korean association of regional geographers
    • /
    • v.14 no.2
    • /
    • pp.114-125
    • /
    • 2008
  • Colored dissolved organic matter(CDOM) is an important component of ocean color that can be used as an invaluable tool in water quality and ocean color studies. With the largest source of coastal CDOM appearing to be from freshwater discharge into the ocean, coastal predictive models will do much to refine our knowledge about major processes that control CDOM distributions in coastal waters and provide a better insight into the global carbon cycle. This study aims at developing a GIS-based watershed-scale predictive model of CDOM distributions in Neponset river watersheds that can be used to appraise our understanding of CDOM sources and distributions in coastal waters and predict the response of CDOM concentration to changes in land use patterns. Weighting factors are developed for CDOM freshwater sources after extensive groundtruthing from various landuse types in the watershed. This model makes use of a publicly available DEM(Digital elevation model) as the base data for analysis. Stream networks, discharge, and land use data are used from public repositories while sub- watershed delineation, pour-points, and land use parcels are generated using Spatial Analysis of ArcGIS 9.2 to estimate the CDOM loading from various sources to the lower tributaries of rivers. The Neponset Watershed in eastern Massachusetts is selected as the site for development of the model.

  • PDF

Transient Groundwater Flow Modeling in Coastal Aquifer

  • Li Eun-Hee;Hyun Yun-Jung;Lee Kang-Kun;Park Byoung-Won
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.293-297
    • /
    • 2006
  • Submarine groundwater discharge (SGD) and the interface between seawater and freshwater in an unconfined coastal aquifer was evaluated by numerical modeling. A two-dimensional vertical cross section of the aquifer was constructed. Coupled flow and salinity transport modeling were peformed by using a numerical code FEFLOW In this study, we investigated the changes in groundwater flow and salinity transport in coastal aquifer with hydraulic condition such as the magnitude of recharge flux, hydraulic conductivity. Especially, transient simulation considering tidal effect and seasonal change of recharge rate was simulated to compare the difference between quasi-steady state and transient state. Results show that SGD flux is in proportion to the recharge rate and hydraulic conductivity, and the interface between the seawater and the freshwater shows somewhat retreat toward the seaside as recharge flux increases. Considered tidal effect, SGD flux and flow directions are affected by continuous change of the sea level and the interface shows more dispersed pattern affected by velocity variation. The cases which represent variable daily recharge rate instead of annual average value also shows remarkably different result from the quasi-steady case, implying the importance of transient state simulation.

  • PDF