• 제목/요약/키워드: Freshwater Discharge

검색결과 170건 처리시간 0.021초

해안대수층에서 담수-염수 경계면 변화에 따른 최대담수양수량과 염수침투제어에 대한 실험적 연구 (Experimental Study of Freshwater Discharge and Saltwater Intrusion Control in Coastal Aquifer)

  • 서성국;오창무;김원일;호정석
    • 한국방재학회 논문집
    • /
    • 제10권5호
    • /
    • pp.159-168
    • /
    • 2010
  • 해안대수층의 지형특성과 수리특성에 의한 담수-염수 경계면과 최대담수양수량의 변화를 연구하였다. 모래 대수층의 수리전도도와 사면경사, 그리고 염수의 염도조건에 따른 담수-염수 경계면의 기울기 및 염수쐐기의 침투길이를 분석하였으며, 일정한 위치의 양수정에서 최대담수양수량과 염수침투제어를 위한 최적염수양수량을 실내 모래수조 모형을 이용하여 분석하였다. 실험결과, 대수층의 수리전도도가 높을수록, 사면경사가 급할수록 최대담수양수량은 증가되었으며, 이때 염도에 의한 영향은 상대적으로 미미하였다. 또한, 최대담수양수량이 증가함에 따라 염수침투제어를 위한 최적염수양수량이 비례적으로 증가되었으며, 그 양은 최대담수양수량 보다 평균 14% 증가되었다. 양수정의 위치에 따라 최대담수양수량과 최적염수양수량은 변화되었고, 염수위와 담수-염수 경계면에서 가까울수록 양수량은 감소하였다. 이러한 결과는 해안지역에서 지하수 개발량의 최대화를 위한 양수정의 위치 선정시, 대수층의 수리전도도, 사면경사 및 염도가 고려되어야 할 것으로 판단된다.

영산강 하구의 식물플랑크톤 군집 및 수 환경: 해수역의 주별 변동 (Phytoplankton Community and Surrounding Water Conditions in the Youngsan River Estuary: Weekly Variation in the Saltwater Zone)

  • 신용식;유행선
    • Ocean and Polar Research
    • /
    • 제40권4호
    • /
    • pp.191-202
    • /
    • 2018
  • In this study we conducted a weekly monitoring exercise at a fixed station in the saltwater zone during the dry season (Jan-Mar, 2013) and wet season (Jun-Aug, 2013) to understand the fluctuations in phytoplankton communities and environmental factors in the Youngsan River estuary altered by a dike constructed in the coastal area. Phytoplankton communities displayed seasonality; diatoms were dominant during the dry season whereas dinoflagellates were dominant during the wet season. T-test analysis showed that water temperature was significantly different between the seasons whereas freshwater discharge from the dike was not significantly different. This suggests that seasonal variations of phytoplankton are more likely affected by water temperature than freshwater discharge. However, a short-term fluctuation was also observed in response to freshwater discharge; freshwater species appeared during or after the discharge in the dry and wet seasons and blooms of harmful species developed after the discharge. Phytoplankton communities may be affected by changes in physical factors such as turbidity and salinity and nutrient supply resulting from freshwater discharge. Especially, the nutrient supply may directly contribute to the harmful algal blooms (HABs) composed of dinoflagellates which can adapt to low salinity after freshwater discharge.

해창만의 수질환경변동 및 담수방류의 영향평가 (Effect of the Freshwater Discharge on Water Quality Variation and in Haechang Bay, Korea)

  • 이대인;조현서;이문옥
    • 환경영향평가
    • /
    • 제12권5호
    • /
    • pp.341-348
    • /
    • 2003
  • Seasonal characteristics of water quality and effect of the freshwater discharge during open the tide embankment in Haechang Bay were evaluated. In the freshwater, where interior of the tide embankment, COD and Chl-a exceeded about 4mg/L and $10mg/m^3$, respectively, independent of season, while in the seawater they showed high values in April and July in contrast to the other period due to input of freshwater and increase of phytoplankton, respectively. The content of seawater inorganic nitrogen maintained a relatively high level at inner part of the bay, whereas high values of inorganic phosphorus content was distributed at all over the bay. The limiting factor for algal growth was nitrogen with respect to the N/P ratio. The compass of influence by the freshwater discharge in April was quite different with water pollutants. As a result of the salinity variation with time, the freshwater extended strongly to offshore from the surface layer without mixing with depth when open the tide embankment, and reached within about one hour at a station which is 3.5km from the tide embankment. To effective water quality management of Haechang Bay, discharge rate and pollutant loads should be controlled.

담수 유입에 따른 천수만 해역의 식물플랑크톤 군집 변화 (Changes in Phytoplankton Community Structure by Freshwater Input in the Cheonsu Bay, Korea)

  • 이승민;장수정;허승
    • 한국환경과학회지
    • /
    • 제28권11호
    • /
    • pp.1005-1017
    • /
    • 2019
  • Environmental factors and changes in phytoplankton community structure before (August 5, 2017), during (August 18 and 25) and after (August 30 and September 15) freshwater input were analyzed to investigate the effects of freshwater input from Ganwol and Bunam lakes located in the upper part of Cheonsu Bay. Due to the large amount of freshwater input in the Cheonsu Bay, the surface salinity of the bay decreased by more than 8 psu, and the thermocline existing in the bay during August weakened. In addition, hypoxic phenomena occurred temporarily in the bay as the low oxygen water mass from the freshwater lakes flowed into the bay, and chemical oxygen demand, nutrients, and N/P increased with freshwater inflow. The density of phytoplankton during the freshwater inflow increased owing to their input from the freshwater lakes. Diatom species (Eucampia zodiacus) dominated the phytoplankton community in the bay before freshwater input; nanoflagellates, chlorophyta, cyanobacteria, and diatoms (Pseudonitzschia delicatissima, Chateocceros spp.) entered during freshwater input; and after freshwater inflow ended, diatoms (Chateocceros spp.) again became predominant indicating a return to previous conditions. The amount of phytoplankton standing crops increased sharply due to the inflow of freshwater species into the bay on the second day of discharge compared to before freshwater input; pre-discharge conditions were restored at most stations except at some sites close to the Bunam Lake three days after discharge. Therefore, the large amount of freshwater flowing into the bay affects not only the geochemical circulation in the bay but also the phytoplankton community structure. In particular, the high concentration of nutrients in the freshwater lake affect the marine ecosystem of the bay during August.

남해 강진만 담수유입에 따른 체류시간 변화 모델링 (Modeling Variation in Residence Time Response to Freshwater Discharge in Gangjin Bay, Korea)

  • 김진호;박성은;이원찬
    • 한국수산과학회지
    • /
    • 제54권4호
    • /
    • pp.480-488
    • /
    • 2021
  • The term residence time is defined as the time taken for substances in a system to leave the system and is a useful concept to explain the physical environment characteristics of a coastal area. It is important to know the spatial characteristics of the residence time to understand the behavioral properties of pollutants generated in a marine system. In this study, the spatial distribution of average residence time was calculated for Gangjin Bay, Korea, using a hydrodynamic model including a particle tracking module. The results showed that the average residence time was about 10 days at the surface layer and about 20 days at the bottom layer. Spatially, this was the longest residence time in the southwestern sea. There was no significant difference in average residence time at the surface layer due to freshwater discharge, but spatial variation at the bottom layer was larger. The average residence time at the bottom layer decreased in the southwestern area due to freshwater discharge and increased in the northern area. This result suggests that the residence time of anthropogenic pollutants may have a large spatial difference depending on the freshwater discharge, and thus the time taken to influence cultured organisms may also vary.

영산강 하구의 하계 담수 방류와 연관된 크기별 Chlorophyll a와 수환경의 일간 변동 (Daily Variation of Size-Fractionated Chlorophyll a Concentrations and Water Conditions Associated with Freshwater Discharge during Summer in the Yeongsan River Estuary)

  • 김세희;신용식
    • 한국해양생명과학회지
    • /
    • 제5권2호
    • /
    • pp.72-80
    • /
    • 2020
  • 영산강 하구는 1981년에 농지 및 농업용수 개발을 위해 하굿둑이 건설되면서 인위적인 변형이 이루어진 시스템으로 하굿둑을 중심으로 담수역과 해수역으로 분리되었다. 하지만 여름철에는 잦은 강우로 인해 수문이 자주 개방되고, 개방 시에 담수가 해수역으로 방류되면서 기수역의 특성을 보이기도 한다. 본 연구에서는 담수 방류의 직접적인 영향을 파악하기 위해 2013년부터 2015년까지 여름철 동안 담수 방류 전후로 일간 모니터링을 실시하여 하계 식물플랑크톤 크기구조와 환경여건 변화를 파악하고자 하였다. 그 결과, 담수 방류는 급격한 염분감소와 탁도를 증가시켜 표층의 용존산소도 감소시키는 것으로 나타났다. 다만 조사 전까지 방류가 지속적으로 이루어진 2014년에는 이미 염분이 감소한 상황이어서 추가적인 방류로 인한 염분의 감소는 나타나지 않았다. 영양염 중에서는 특히 질소성 영양염의 유입이 크게 나타났고, 이로 인해 질소의 상대적 제한 보다는 인이나 규소의 제한 가능성이 크게 나타났다. 식물플랑크톤 생체량 및 크기구조는 연도별로 상이한 결과를 보였으나 결과적으로 담수 방류에 따라 변화를 초래하였고, 방류 후에도 어느 정도 그 경향이 유지되었다. 결론적으로 불규칙적이고 예측이 어려운 담수 방류는 염분, 탁도, 영양염 농도 등의 환경요인뿐만 아니라 식물플랑크톤의 생체량 및 크기구조를 단기적으로 크게 변화시키는 것으로 나타났다. 이러한 변화는 적조와 같은 유해조류발생(HABs) 뿐만 아니라, 먹이량 및 미세먹이망 변화를 통해 상위소비자 그리고 먹이망 구조에도 영향을 미칠 수 있을 것으로 사료된다.

Response of estuary flow and sediment transport according to different estuarine dam locations and freshwater discharge intervals

  • Steven Figueroa;Minwoo Son
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.519-519
    • /
    • 2023
  • Estuarine dams are a recent and global phenomenon. While estuarine dams can provide the benefit of improved freshwater resources, they can also alter estuarine processes. Due to the wide range of estuarine types and estuarine dam configurations, the effect of estuarine dams on estuaries is not well understood in general. To develop a systematic understanding of the effect of estuarine dam location and freshwater discharge interval on a range of estuarine types (strongly stratified, partially mixed, periodically stratified, and well-mixed), this study used a coupled hydrodynamic-sediment dynamic numerical model (COAWST) and compared flow, sediment transport, and morphological conditions in the pre- and post-dam estuaries. For each estuarine type, scenarios with dam locations at 20, 55 and 90 km from the mouth and discharge intervals of a discharge every 0.5, 3, and 7 days were investigated. The results were analyzed in terms of change in tide, river discharge, estuarine classification, and sediment flux mechanism. The estuarine dam location primarily affected the tide-dominated estuaries, and the resonance length was an important length scale affecting the tidal currents and Stokes return flow. When the location was less than the resonance length, the tidal currents and Stokes return flow were most reduced due to the loss of tidal prism, the dead-end channel, and the shift from mixed to standing tides. The discharge interval primarily affected the river-dominated estuaries, and the tidal cycle period was an important time scale. When the interval was greater than the tidal cycle period, notable seaward discharge pulses and freshwater fronts occurred. Dams located near the mouth with large discharge interval differed the most from their pre-dam condition based on the estuarine classification. Greater discharge intervals, associated with large discharge magnitudes, resulted in scour and seaward sediment flux in the river-dominated estuaries, and the dam located near the resonance length resulted in the greatest landward tidal pumping sediment flux and deposition in the tide-dominated estuaries.

  • PDF

DETECTION OF GROUNDWATER DISCHARGE POINTS IN COASTAL REGIONS AROUND MT. CHOKAISAN, JAPAN BY USING LANDSAT ETM+ DATA

  • Kageyama, Yoichi;Shibata, Chieko;Nishida, Makoto
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2008년도 International Symposium on Remote Sensing
    • /
    • pp.57-60
    • /
    • 2008
  • The flow of freshwater into the sea, termed as submarine groundwater discharge, is a key factor for understanding the hydrological cycle in both the sea and land regions. The numerous positions from which freshwater gushes out or its quantity impedes the understanding of its properties. Therefore, this study detects groundwater discharge points arising due to the difference in freshwater and seawater by using the multispectral Landsat ETM+ signals. A case study in coastal regions around Mt. Chokaisan, Japan is performed. This study comprises three procedures: (1) computer simulation of the flow of submarine groundwater discharge in the study area, (2) performance of preliminary experiment on the band properties of the Landsat ETM+, (3) detection of the difference in water properties by using the Landsat multispectral bands. Our experimental results obtained by the Landsat ETM+ are in considerable agreement with the realities in the study area.

  • PDF

낙동강 하구의 담수 방류와 표층 수온 및 염분 반응 : 계류형 센서 연속관측 결과 (Effect of Freshwater Discharge on the Nakdong River Estuary: Mooring Observations of Water Temperature and Salinity)

  • 김상일;윤석현
    • 해양환경안전학회지
    • /
    • 제25권1호
    • /
    • pp.89-95
    • /
    • 2019
  • 낙동강 하구에서 연속관측 자료를 바탕으로 담수의 방류와 수온 및 염분의 시간에 따른 반응을 조사하였다. 낙동강 하구 서쪽 해역에 계류형 센서를 설치하고 2017년 4월 1일부터 2018년 3월 31일까지 10분 간격으로 수온과 염분을 측정하였다. 담수의 방류량은 평상시에 $200m^3\;s^{-1}\;d^{-1}$ 이하로 유지되었으나, 풍수기에는 $500{\sim}1000m^3\;s^{-1}\;d^{-1}$ 이상의 많은 양의 담수가 빈번하게 방류되었다. 담수의 방류는 대조기에는 간조를 전후하여 발생하였고, 소조기 동안에는 계속적으로 일어났다. 평상시에 수온과 염분은 소조기 동안 큰 변동 없이 안정되는 경향을 보이는 반면에, 대조기에는 방류주기에 따라 규칙적인 변동을 나타내었다. 연구기간 동안 염분은 평균 29이었으며, 평상시에 염분 농도는 평균 이상으로 유지되었고 일시적인 감소 이후에도 빠르게 회복되었다. 풍수기에는 약 3개월 동안 평균 이하의 저염환경이 지속되었다. 이러한 결과는 담수의 방류량뿐만 아니라 방류의 지속시간과 대량 방류의 빈도가 낙동강 하구의 표층 수온과 염분의 변동성에 영향을 미치는 중요한 요인이 된다는 것을 의미한다.

낙동강 하구해역의 식물플랑크톤 극대역 변동에 관한 수직시뮬레이션 -I. 식물플랑크톤 극대역 변동 현황- (The numerical simulation on variation of phytoplankton maximum region in the estuary of Nakdong river -I. The state of variation of phytoplankton maximum region-)

  • 이대인
    • 한국환경과학회지
    • /
    • 제9권5호
    • /
    • pp.369-374
    • /
    • 2000
  • The estuary of Nakdong river is very influenced by the freshwater contained nutrients and organic materials. The response results of these influences are eutrophication and red tide outbreak in this region. Concentration of chlorophyll a was 0.78~62.55$\mu\textrm{g}$/L in February 1.20~21.29$\mu\textrm{g}$/L in April 1.88~188.35$\mu\textrm{g}$/L in June and 0.78~11.21$\mu\textrm{g}$/L in August respectively. The decrease of chlorophyll a is considered that residence time is shorten by increase of freshwater discharge and unfavorable growth condition of phytoplankton is created by diffusion of low salinity and increase of turbidity. The phytoplankton maximum region located inner side of this estuary during winter season whereas it was moved to outer side when mean discharge of the Nakdong risver was increased, Therefore the variation of phytoplankton maximum region was affected by input discharge from the Nakdong river basin.

  • PDF