• Title/Summary/Keyword: Fresh Ginseng

Search Result 384, Processing Time 0.024 seconds

Optimum Harvesting Time Based on Growth Characteristics of Four-year Ginseng (4년생 인삼에서 생육특성과 수확적기)

  • Ah, Young-Nam;Lee, Seon-Young;Choung, Myoung-Gun;Kang, Kwang-Hee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47 no.3
    • /
    • pp.211-215
    • /
    • 2002
  • This study was carried out to find out the optimum harvesting time on the basis of physiological characteristics, yield and commercial value in four years old ginseng. For this purpose, the changes of agronomic growth characteristics of the aerial and underground parts with different growing stages were examined with fourth year ginseng. The leaf growth was dramatically increased from the mid-April (shooting stage) to the mid-May (flowering stage), and the growth was nearly completed by the mid-May, but the stem growth continued by the mid-August. The weight of fresh root decreased from the April (20.7g) to the June (18.2g), but increased from the June to the October(45. 1g). The yield of fresh root per "Kan" was 1.5 kg, 1.2kg and 1.3kg at the April, the May and the June, respectively, thereafter continually increased to 2.9 kg of the October, which showing the maximum yield. In conclusion, the ginseng root was generally harvested from the September to the October at farm-house, but it had better be harvested after the mid-October rather than from September to October considering the weight of dry root and the yield of fresh ginseng.h ginseng.

Changes in Chemical Components of Red Ginseng Processed from the Fresh Ginseng Stored at Low Temperature (저온저장 후 제조한 홍삼의 성분변화)

  • 장진규;박채규;심기환
    • Food Science and Preservation
    • /
    • v.10 no.2
    • /
    • pp.158-161
    • /
    • 2003
  • The six-year old fresh ginseng harvested at earlier October was stored for 10 weeks in the rendition of 4$^{\circ}C$${\pm}$1$^{\circ}C$ and RH 87∼92%, and the sugar content and the change of color was investigated in an interval of one week by taking sample of it after processed it to red ginseng. The total sugar content was 62.71% before it was stored and was a little reduced to 54.58% after 10 weeks of storage. The reducing sugar content was 11.69% before it was stored and was a little reduced to 9.92% after 7 weeks of storage. For the free sugars, the content of fructose was 0.47% before storage and gradually increased to 4.70% after 10 weeks of storage, and the contents of glucose and sucrose were gradually decreased after they have their peak value of 2.31% and 25.89% at five and three weeks of storage. The content of maltose was 6.62% before storage and it gradually reduced to 1.37% after 10 weeks of storage. The color intensity was generally increased with the storage time, and the total rotor value(ΔE) has its peak value of 8.89 after 9 weeks of storage. For the browning pigment, the absorbance of 420nm and 440nm was increased after 6 weeks of storage. The similar trend was observed at 285nm where the precursor of browning pigment was investigated, however, the change was not observed for the freeze dryed ginseng.

The Global Ginseng Market and Korean Ginseng

  • Baeg, In-Ho
    • Journal of Ginseng Culture
    • /
    • v.4
    • /
    • pp.1-12
    • /
    • 2022
  • Ginseng and ginseng products are distributed in approximately 190 countries around the world. The size of the ginseng market varies by country and there are no accurate statistics on production and distribution amounts per country. Therefore, it is difficult to make predictions about the global ginseng market. Governments and ginseng trading companies are in need of comprehensive data that shows the current status of the ginseng market to help them establish effective import, export, and sales and marketing policies. To addressthis need, this study examines the approximate size of the world ginseng market based on estimates of recent quantities of ginseng distributed in specific country as well as production by major ginseng producing countries. In 2018, global ginseng production was about 86,223 tons based on fresh ginseng. China produced 50,164 tons, South Korea 23,265 tons, Canada 11,367 tons, the US 1,285 tons, Japan 30 tons, and other countries a combined 112 tons. The value of global ginseng production is estimated to be approximately $5,900 million, with $2,870 million (48.6%) in China, $2,489 million (42.2%) in South Korea, $478 million (8.1%) in Canada, $54 million (0.9%) in the USA, $4 million (0.1%) in Japan, and $5 million (0.1%) in other countries. The value of ginseng products consumed for the last five yearsin South Korea was $1,162 million in 2014, $1,280 million in 2015, $1,548 million in 2016, $1,638 million in 2017, and $1,762 million in 2018, showing that the market has been increasing in recent years. In particular, the Korea Ginseng Corporation (KGC), the biggest global ginseng company in South Korea, recorded sales of $1,207 million in 2018. This represents about 69% of the South Korean ginseng market, and about 20% of global production. Since interest in alternative medicine and health food among consumers is increasing globally, the market for ginseng is expected to expand into the future.

The Effects of Auxin and Casein Hydrolysate on the Growth of Ginseng Hairy Root (인삼모상근의 생장에 미치는 Auxin과 Casein Hydrolysate의 영향)

  • 오승용;박효진;민병훈;양계진;양덕춘
    • Journal of Ginseng Research
    • /
    • v.24 no.3
    • /
    • pp.123-127
    • /
    • 2000
  • In this study, the effects of auxin and casein hydrolysate (CH) on the growth of ginseng hairy root was elucidated. Ginseng hairy root was cultured under light and dark conditions in MS solid and liquid medium with various concentrations of auxin and CH for fifty days. After harvesting the cultures, the fresh and dry weight of cultures were examined, respectively. In the MS solid culture, 1 mg/L of IBA was most effective on the growth of ginseng hairy root under the dark condition, whereas IAA and CH did not affect on the growth of ginseng hairy root. In the MS liquid culture, the growth was maintained regularly by the treatments of IAA and NAA. IBA and CH restrained the growth of ginseng hairy root.

  • PDF

Effect of Temperature on Growth of new Shoot in Panax ginseng under Dark (인삼근 신아의 암하생육에 미치는 영향)

  • Park, Hoon;Yoo, Ki-Joong;Lee, Jong-Ryool
    • Journal of Ginseng Research
    • /
    • v.6 no.1
    • /
    • pp.11-16
    • /
    • 1982
  • New shoot growth of Panax ginseng root was investigated comparing with burley and soybean from l0$^{\circ}C$ to 30$^{\circ}C$ under dark. Shoot growth ceased by 12days at 30$^{\circ}C$ and optimum temperature appeared to be 15$^{\circ}C$/20$^{\circ}C$ (15hrs/9 hrs) , and 15$^{\circ}C$/15$^{\circ}C$ for ginseng. Shoot growth seems to be Poor below l0$^{\circ}C$. Temperature for maximum growth 20$^{\circ}C$/20$^{\circ}C$ for barley and 20$^{\circ}C$ /25$^{\circ}C$ for soybean. Barley did not germinate above 25$^{\circ}C$/25$^{\circ}C$, but grow better than soybean below 15$^{\circ}C$/25$^{\circ}C$. Fresh weight of 2 weeks suggesting cessation of water uptake at higher temporal use. Ginseng showed greater root ply s shoot of ginseng was linearly increased at 15$^{\circ}C$ but did not increased at 25$^{\circ}C$ after occurence of die-back of new shoot or root rot above 25$^{\circ}C$.

  • PDF

Free sugar distribution in ginseng plant and change of it's content in the root with dehydration (인삼부위별 및 건조온도에 따른 유리당의 함량변화)

  • 김해중;조재선
    • Journal of Ginseng Research
    • /
    • v.7 no.1
    • /
    • pp.44-50
    • /
    • 1983
  • This study was conducted to investigate distribution of free sugas in the ginseng plant and change of free sugar content in dried ginseng with various drying conditions. The results obtained are as follows: 1. The total free sugar content is about 1% in the root and about 2% in the upland portions. Sucrose which accounts 80% in those free sugars, is 0.91% in main body 0.90% in raw ginseng, 0.74% in latheral root, 0.67% in head, 0.57% in skin, 0.64% in leaves, and 0.35% in steins. 2. Sucrose content is 3.3~4.6% in the ginseng root dried at temperature of 3$0^{\circ}C$ and 0.5 ~ 1% in the root dried it at temperature of 50-9$0^{\circ}C$. 3. Maltose was not present in fresh ginseng or dried ginseng which was dried under the t, but it was produced dried at the temperature above 5$0^{\circ}C$, it was 0.5% at 5$0^{\circ}C$, 1.49 %. at 7$0^{\circ}C$, and 4.03% at 9$0^{\circ}C$, respectively. This sugar Height be produced by endogenous saccharifying enzymes.

  • PDF

Physico Chemical Properties of Korean Ginseng (Panax ginseng C.A. Meyer) Root Starch II. Chemical Properties of the Starch (고려인삼 ( Panax ginseng. C.A. Meyer)전분의 이화학적 특성에 관한 연구 제 2보 전분의 화학적 특성)

  • Kim, Hae-Jung;Jo, Jae-Seon;Yu, Yeong-Jin
    • Journal of Ginseng Research
    • /
    • v.8 no.2
    • /
    • pp.124-134
    • /
    • 1984
  • Ginseng root starch, prepared by conventional method, contained crude lipid of 0.5%, crude protein of 0.4%, crude mineral of 0.17% and phosphorous of 12.5mg% as noncarbohydrate constituents. The amylose content of ginseng root starch picked in Summer (May to August) and Winter (November to March) was 32-35% and 15-20%, respectively, and it was decreased with a growing preiod of ginseng. The blue value, alkali number and ferricyanide number of the starch were 0.14-0.17, 8.50 and 0.781, respectively. The molecular weight of amylose in the starch was estimated to be 1.27-7.95${\times}$105 by means of periodate oxidation, and the degree of branching and glucose unit per segment of amylopectin were 3.50-3.53% and 28.3-28.5, respectively, The starch content of ginseng root was decreased when dried under sunlight and stored at 5$^{\circ}C$ for twenty days. In contrast, sucrose content in the root was increased from 3.8% in fresh state to 11.5% during storage at the above condition. In the other hand, starch was converted to maltose by heating at temperature above 70$^{\circ}C$.

  • PDF

Conversion of Acidic Polysaccharide and Phenolic Compound of Changed Ginseng by 9 Repetitive Steaming and Drying Process, and Its Effects of Antioxidation (인삼의 구증구포에 의한 산성다당체, 페놀성화합물의 변환 및 항산화능)

  • Kim, Do-Wan;Lee, Yun-Jin;Min, Jin-Woo;Kim, Yu-Jin;Rho, Young-Deok;Yang, Deok-Chun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.1
    • /
    • pp.121-126
    • /
    • 2009
  • Korean ginseng (Panax ginseng C. A. Meyer) has been used as an important medicinal plant in the Orient for a long time. It has been claimed that ginseng has many beneficial bioactive effects on human health, such as antitumor, antistress, antiaging and enhancing immune functions. Red ginseng possibly have new ingredients converted during steaming and dry process from fresh ginseng. In this study, pharmacological efficacy and ingredient conversion of ginseng by 9 repetitive steaming and drying process were investigated measuring conversion efficiency of acidic-polysaccharide, phenolic compounds and inhibition of peroxide lipides. It was found that acidic-polysaccarides were increased by heat treatment. In addition, maltol of phenolic compounds, strong antioxidant, produced during the process of red ginseng by Maillard reaction. Acidic-polysaccarides and maltol were increased after the 1st and 3rd steaming and drying treatments, but they were decreased gradually after 5th, 7th, and 9th treatments. Antioxidant activity was increased as increasing treatment times of steaming and drying without significance. Effect of red ginseng extract on inhibition of peroxide was increased gradually until after the 7th treatment, but remarkably decreased after the 9th treatment.

Cancer Chemopreventive Compounds of Red Ginseng Produced from panax ginseng C.A. Meyer (고려인삼으로 제조된 홍삼중의 화학적 암 예방성분)

  • Yun, Taik-Koo;Lee, Yun-Sil;Lee, You-Hui;Yun, Hyo-Yung
    • Journal of Ginseng Research
    • /
    • v.25 no.3
    • /
    • pp.107-111
    • /
    • 2001
  • Fresh Panax gineng C.A. cultivated in Korea(Korean red ginseng) was found to be ineffective as anticarcinogenic or cancer preventive in experimental animal model or in human case-control and cohort study. However, when treated with heat, the fresh ginseng, white ginseng were highly effective cancer preventives. Four compounds including 20(S)-ginsenoside Rh$_1$(Rh$_1$), 20(S)-ginsenoside Rh$_2$(Rh$_2$), 20(S)0-siwenoside Rg$_3$(Rg$_3$) and sinsenoside Rg$\sub$5/ were consequently purified from Korean red ginseng, and they were tested by Yun\`s 9 week medium-term anticarcinogenicity test model. Rg$_3$ and Rg$\sub$5/ statistically significantlydecreased the incidence of benzo(a)pyrene-induced mouse lung tumor, Rh$_2$showed tendency of decrease, and Rh1 showed no effect. It is, therefore, concluded that Rg$_3$ and Rg$\sub$5/ are active anticarcinogenic components in res ginseng and they either singularly or synergistically act in the prevention of cancer.

  • PDF

An Isolation of Crude Saponin from Red-Ginseng Efflux by Diaion HP-20 Resin Adsorption Method (홍삼유출액으로부터 Diaion HP-20 수지 흡착법에 의한 조사포닌의 분리)

  • 곽이성;경종수;김시관;위재준
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.30 no.1
    • /
    • pp.1-5
    • /
    • 2001
  • This study was carried out to isolate saponin compounds from red-ginseng efflux, which was produced during the industrial processing of red-ginseng from fresh ginseng. We isolated crude saponin from the efflux extract (moisture content 35.0%) by using Diaion HP-20 adsorption method. Non-saponin fraction, which was adsorbed on Diaion HP-20 resin, was removed by eluating with $H_{2}O$ and 25% spirit. Then crude saponin was eluated with 95% spirit, continuously. Saponin in the eluated fractions was confirmed by TLC analysis. Crude saponin isolated from red ginseng efflux extract contained 12.10% of saponin. whereas those of white ginseng and red-ginseng were 3.30 and 3.39%, respectively. Ginsenoside contents showed the highest contents kin crude saponin from red ginseng efflux extract. Expacilly, the ginsenoside-$Rb_{1}$ and Re showed the highest contents in red-ginseng efflux extract when compared with those of white ginseng and red ginseng crude saponins. And the other ginsenosides except ginsenoside-$Rb_{1}$ and -Re also showed the highest contents in red ginseng efflux extract. However, the ratio of PD saponin (Panaxadiol saponin: $Rb_{1}+Rb_{2}$+Rc+Rd) to PT saponin (panaxatriol: $Re+Rg_{1}$) showed almost the same level when compared with those of ginseng saponin fractions. Ratio of PD/PT from red ginseng efflux extract was 1.99. Ratios of PD/PT from white ginseng and red ginseng were 1.85 and 1.84, respectively. Saponin purity, which was calculated by ratio percent of total ginsenoside to curde saponin content, was 45.90%. In case of white ginseng and red ginseng, the purities were 35.50 and 36.00%, respectively. However, by PHLC analysis, we confirmed that crude saponin isolated from red ginsengs. It suggested that crude saponin isolated from red ginseng ellux also would be useful component as ginseng saponins.

  • PDF