• 제목/요약/키워드: Frequent Items

Search Result 263, Processing Time 0.02 seconds

A New Method for Efficiently Generating of Frequent Items by IRG in Data Mining (데이터 마이닝에서 IRG에 의한 효율적인 빈발항목 생성방법)

  • 허용도;이광형
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.1
    • /
    • pp.120-127
    • /
    • 2002
  • The common problems found in the data mining methods current in use have following problems. First: It is ineffective in searching for frequent items due to changing of minimal support values. Second: It is not adaptable to occurring of unuseful relation rules. Third: It is very difficult to re-use preceding results while adding new transactions. In this paper, we introduce a new method named as SPM-IRG(Selective Patters Mining using item Relation Graph), that is designed to solve above listed problems. SPM-IRG method creates a frequent items using minimal support values obtained by investigating direct or indirect relation of all items in transaction. Moreover, the new method can minimize inefficiency of existing method by constructing frequent items using only the items that we are interested.

  • PDF

An Algorithm for reducing the search time of Frequent Items (빈발 항목의 탐색 시간을 단축하기 위한 알고리즘)

  • Yun, So-Young;Youn, Sung-Dae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.1
    • /
    • pp.147-156
    • /
    • 2011
  • With the increasing utility of the recent information system, the methods to pick up necessary products rapidly by using a lot of data has been studied. Association rule search methods to find hidden patterns has been drawing much attention, and the Apriori algorithm is a major method. However, the Apriori algorithm increases search time due to its repeated scans. This paper proposes an algorithm to reduce searching time of frequent items. The proposed algorithm creates matrix using transaction database and search for frequent items using the mean number of items of transactions at matrix and a defined minimum support. The mean number of items of transactions is used to reduce the number of transactions, and the minimum support to cut down on items. The performance of the proposed algorithm is assessed by the comparison of search time and precision with existing algorithms. The findings from this study indicated that the proposed algorithm has been searched more quickly and efficiently when extracting final frequent items, compared to existing Apriori and Matrix algorithm.

An Extended Frequent Pattern Tree for Hiding Sensitive Frequent Itemsets (민감한 빈발 항목집합 숨기기 위한 확장 빈발 패턴 트리)

  • Lee, Dan-Young;An, Hyoung-Geun;Koh, Jae-Jin
    • The KIPS Transactions:PartD
    • /
    • v.18D no.3
    • /
    • pp.169-178
    • /
    • 2011
  • Recently, data sharing between enterprises or organizations is required matter for task cooperation. In this process, when the enterprise opens its database to the affiliates, it can be occurred to problem leaked sensitive information. To resolve this problem it is needed to hide sensitive information from the database. Previous research hiding sensitive information applied different heuristic algorithms to maintain quality of the database. But there have been few studies analyzing the effects on the items modified during the hiding process and trying to minimize the hided items. This paper suggests eFP-Tree(Extended Frequent Pattern Tree) based FP-Tree(Frequent Pattern Tree) to hide sensitive frequent itemsets. Node formation of eFP-Tree uses border to minimize impacts of non sensitive frequent itemsets in hiding process, by organizing all transaction, sensitive and border information differently to before. As a result to apply eFP-Tree to the example transaction database, the lost items were less than 10%, proving it is more effective than the existing algorithm and maintain the quality of database to the optimal.

Frequent Items Mining based on Regression Model in Data Streams (스트림 데이터에서 회귀분석에 기반한 빈발항목 예측)

  • Lee, Uk-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.1
    • /
    • pp.147-158
    • /
    • 2009
  • Recently, the data model in stream data environment has massive, continuous, and infinity properties. However the stream data processing like query process or data analysis is conducted using a limited capacity of disk or memory. In these environment, the traditional frequent pattern discovery on transaction database can be performed because it is difficult to manage the information continuously whether a continuous stream data is the frequent item or not. In this paper, we propose the method which we are able to predict the frequent items using the regression model on continuous stream data environment. We can use as a prediction model on indefinite items by constructing the regression model on stream data. We will show that the proposed method is able to be efficiently used on stream data environment through a variety of experiments.

Finding the time sensitive frequent itemsets based on data mining technique in data streams (데이터 스트림에서 데이터 마이닝 기법 기반의 시간을 고려한 상대적인 빈발항목 탐색)

  • Park, Tae-Su;Chun, Seok-Ju;Lee, Ju-Hong;Kang, Yun-Hee;Choi, Bum-Ghi
    • Journal of The Korean Association of Information Education
    • /
    • v.9 no.3
    • /
    • pp.453-462
    • /
    • 2005
  • Recently, due to technical improvements of storage devices and networks, the amount of data increase rapidly. In addition, it is required to find the knowledge embedded in a data stream as fast as possible. Huge data in a data stream are created continuously and changed fast. Various algorithms for finding frequent itemsets in a data stream are actively proposed. Current researches do not offer appropriate method to find frequent itemsets in which flow of time is reflected but provide only frequent items using total aggregation values. In this paper we proposes a novel algorithm for finding the relative frequent itemsets according to the time in a data stream. We also propose the method to save frequent items and sub-frequent items in order to take limited memory into account and the method to update time variant frequent items. The performance of the proposed method is analyzed through a series of experiments. The proposed method can search both frequent itemsets and relative frequent itemsets only using the action patterns of the students at each time slot. Thus, our method can enhance the effectiveness of learning and make the best plan for individual learning.

  • PDF

Performance Analysis of Frequent Pattern Mining with Multiple Minimum Supports (다중 최소 임계치 기반 빈발 패턴 마이닝의 성능분석)

  • Ryang, Heungmo;Yun, Unil
    • Journal of Internet Computing and Services
    • /
    • v.14 no.6
    • /
    • pp.1-8
    • /
    • 2013
  • Data mining techniques are used to find important and meaningful information from huge databases, and pattern mining is one of the significant data mining techniques. Pattern mining is a method of discovering useful patterns from the huge databases. Frequent pattern mining which is one of the pattern mining extracts patterns having higher frequencies than a minimum support threshold from databases, and the patterns are called frequent patterns. Traditional frequent pattern mining is based on a single minimum support threshold for the whole database to perform mining frequent patterns. This single support model implicitly supposes that all of the items in the database have the same nature. In real world applications, however, each item in databases can have relative characteristics, and thus an appropriate pattern mining technique which reflects the characteristics is required. In the framework of frequent pattern mining, where the natures of items are not considered, it needs to set the single minimum support threshold to a too low value for mining patterns containing rare items. It leads to too many patterns including meaningless items though. In contrast, we cannot mine any pattern if a too high threshold is used. This dilemma is called the rare item problem. To solve this problem, the initial researches proposed approximate approaches which split data into several groups according to item frequencies or group related rare items. However, these methods cannot find all of the frequent patterns including rare frequent patterns due to being based on approximate techniques. Hence, pattern mining model with multiple minimum supports is proposed in order to solve the rare item problem. In the model, each item has a corresponding minimum support threshold, called MIS (Minimum Item Support), and it is calculated based on item frequencies in databases. The multiple minimum supports model finds all of the rare frequent patterns without generating meaningless patterns and losing significant patterns by applying the MIS. Meanwhile, candidate patterns are extracted during a process of mining frequent patterns, and the only single minimum support is compared with frequencies of the candidate patterns in the single minimum support model. Therefore, the characteristics of items consist of the candidate patterns are not reflected. In addition, the rare item problem occurs in the model. In order to address this issue in the multiple minimum supports model, the minimum MIS value among all of the values of items in a candidate pattern is used as a minimum support threshold with respect to the candidate pattern for considering its characteristics. For efficiently mining frequent patterns including rare frequent patterns by adopting the above concept, tree based algorithms of the multiple minimum supports model sort items in a tree according to MIS descending order in contrast to those of the single minimum support model, where the items are ordered in frequency descending order. In this paper, we study the characteristics of the frequent pattern mining based on multiple minimum supports and conduct performance evaluation with a general frequent pattern mining algorithm in terms of runtime, memory usage, and scalability. Experimental results show that the multiple minimum supports based algorithm outperforms the single minimum support based one and demands more memory usage for MIS information. Moreover, the compared algorithms have a good scalability in the results.

Mining Maximal Frequent Contiguous Sequences in Biological Data Sequences

  • Kang, Tae-Ho;Yoo, Jae-Soo;Kim, Hak-Yong;Lee, Byoung-Yup
    • International Journal of Contents
    • /
    • v.3 no.2
    • /
    • pp.18-24
    • /
    • 2007
  • Biological sequences such as DNA and amino acid sequences typically contain a large number of items. They have contiguous sequences that ordinarily consist of more than hundreds of frequent items. In biological sequences analysis(BSA), a frequent contiguous sequence search is one of the most important operations. Many studies have been done for mining sequential patterns efficiently. Most of the existing methods for mining sequential patterns are based on the Apriori algorithm. In particular, the prefixSpan algorithm is one of the most efficient sequential pattern mining schemes based on the Apriori algorithm. However, since the algorithm expands the sequential patterns from frequent patterns with length-1, it is not suitable for biological datasets with long frequent contiguous sequences. In recent years, the MacosVSpan algorithm was proposed based on the idea of the prefixSpan algorithm to significantly reduce its recursive process. However, the algorithm is still inefficient for mining frequent contiguous sequences from long biological data sequences. In this paper, we propose an efficient method to mine maximal frequent contiguous sequences in large biological data sequences by constructing the spanning tree with a fixed length. To verify the superiority of the proposed method, we perform experiments in various environments. The experiments show that the proposed method is much more efficient than MacosVSpan in terms of retrieval performance.

Multi-Sized cumulative Summary Structure Driven Light Weight in Frequent Closed Itemset Mining to Increase High Utility

  • Siva S;Shilpa Chaudhari
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.2
    • /
    • pp.117-129
    • /
    • 2023
  • High-utility itemset mining (HIUM) has emerged as a key data-mining paradigm for object-of-interest identification and recommendation systems that serve as frequent itemset identification tools, product or service recommendation systems, etc. Recently, it has gained widespread attention owing to its increasing role in business intelligence, top-N recommendation, and other enterprise solutions. Despite the increasing significance and the inability to provide swift and more accurate predictions, most at-hand solutions, including frequent itemset mining, HUIM, and high average- and fast high-utility itemset mining, are limited to coping with real-time enterprise demands. Moreover, complex computations and high memory exhaustion limit their scalability as enterprise solutions. To address these limitations, this study proposes a model to extract high-utility frequent closed itemsets based on an improved cumulative summary list structure (CSLFC-HUIM) to reduce an optimal set of candidate items in the search space. Moreover, it employs the lift score as the minimum threshold, called the cumulative utility threshold, to prune the search space optimal set of itemsets in a nested-list structure that improves computational time, costs, and memory exhaustion. Simulations over different datasets revealed that the proposed CSLFC-HUIM model outperforms other existing methods, such as closed- and frequent closed-HUIM variants, in terms of execution time and memory consumption, making it suitable for different mined items and allied intelligence of business goals.

The Ratios of CEFR-J Vocabulary Usage Compared with GSL and AWL in Elementary EFL Classrooms and Suggestions of Vocabulary Items to be Taught

  • Ohashi, Yukiko;Katagiri, Noriaki
    • Asia Pacific Journal of Corpus Research
    • /
    • v.1 no.1
    • /
    • pp.61-94
    • /
    • 2020
  • The present study examined vocabulary usage in elementary English classrooms in Japan using elementary school corpus. The authors used three wordlists to benchmark the lexical items for four classes in the corpus: the CEFR-J, the General Service List (GSL), and Academic Word List (AWL). The percentage of vocabulary usage belonging to the Level A1 in the CEFR-J was below 15% (Class A: 12.1%, Class B: 12.6%, Class C: 8.9%, and Class D: 13.6%) with no statistical difference between levels. The mean ratio of Level A2 vocabulary items was below 10%, and all classes showed less than 1% of vocabulary usage for the Levels B1 and B2. Over 70% of all vocabulary items in the corpus belonged to the most frequent 1,000-word band (level 1) of the GSL, while the next most frequent word band (level 2 of the GSL and AWL) accounted for less than 10%. The results suggest that elementary school English teachers should use more vocabulary items in the CEFR-J Level A1. The findings demonstrate that elementary school teachers are less likely to expose their pupils to grammatically well-structured sentences with an abundance of lexical items since the teachers repeatedly use the same lexemes in each class.

Clustering XML Documents Considering The Weight of Large Items in Clusters (클러스터의 주요항목 가중치 기반 XML 문서 클러스터링)

  • Hwang, Jeong-Hee
    • The KIPS Transactions:PartD
    • /
    • v.14D no.1 s.111
    • /
    • pp.1-8
    • /
    • 2007
  • As the web document of XML, an exchange language of data in the advanced Internet, is increasing, a target of information retrieval becomes the web documents. Therefore, there we researches on structure, integration and retrieval of XML documents. This paper proposes a clustering method of XML documents based on frequent structures, as a basic research to efficiently process query and retrieval. To do so, first, trees representing XML documents are decomposed and we extract frequent structures from them. Second, we perform clustering considering the weight of large items to adjust cluster creation and cluster cohesion, considering frequent structures as items of transactions. Third, we show the excellence of our method through some experiments which compare which the previous methods.