• Title/Summary/Keyword: Frequency-reconfigurable

Search Result 96, Processing Time 0.025 seconds

Design of a Fully Reconfigurable Multi-Constellation and Multi-Frequency GNSS Signal Generator

  • ByungHyun Choi;Young-Jin Song;Subin Lee;Jong-Hoon Won
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.3
    • /
    • pp.295-306
    • /
    • 2023
  • This paper presents a multi-frequency and multi-constellation Global Navigation Satellite System (GNSS) signal generator that simulates intermediate frequency level digital signal samples for testing GNSS receivers. GNSS signal generators are ideally suited for testing the performance of GNSS receivers and algorithms under development in the laboratory for specific user locations and environments. The proposed GNSS signal generator features a fully-reconfigurable structure with the ability to adjust signal parameters, which is beneficial to generate desired signal characteristics for multiple scenarios including multi-constellation and frequencies. Successful signal acquisition, tracking, and navigation are demonstrated on a verified Software Defined Radio (SDR) in this study. This work has implications for future studies and advances the research and development of new GNSS signals.

Design of Flexible Reconfigurable Frequency Selective Surface for X-Band Applications (유연한 구조를 갖는 X-Band 재구성 주파수 선택구조 설계)

  • Lee, In-Gon;Park, Chan-Sun;Yook, Jong-Gwan;Park, Yong-Bae;Chun, Heung-Jae;Kim, Yoon-Jae;Hong, Ic-Pyo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.1
    • /
    • pp.80-83
    • /
    • 2017
  • In this paper, the X-band reconfigurable frequency selective surface having flexible geometry was proposed. The proposed RFSS is composed of patterns of cross-shaped loop with inductive stub, which can control the frequency response for C-Band and X-band by ON/OFF state of PIN diode. To minimize the parasitic effect and to obtain the high level of isolation between the unit cell of FSS and the bias circuit, we designed the grid type bias line on bottom layer through via hole. The measured transmission characteristics show good agreement with the simulation results and good stability of frequency response for different incident angles and curvatures of surface.

RF MEMS Switches and Integrated Switching Circuits

  • Liu, A.Q.;Yu, A.B.;Karim, M.F.;Tang, M.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.3
    • /
    • pp.166-176
    • /
    • 2007
  • Radio frequency (RF) microelectromechanical systems (MEMS) have been pursued for more than a decade as a solution of high-performance on-chip fixed, tunable and reconfigurable circuits. This paper reviews our research work on RF MEMS switches and switching circuits in the past five years. The research work first concentrates on the development of lateral DC-contact switches and capacitive shunt switches. Low insertion loss, high isolation and wide frequency band have been achieved for the two types of switches; then the switches have been integrated with transmission lines to achieve different switching circuits, such as single-pole-multi-throw (SPMT) switching circuits, tunable band-pass filter, tunable band-stop filter and reconfigurable filter circuits. Substrate transfer process and surface planarization process are used to fabricate the above mentioned devices and circuits. The advantages of these two fabrication processes provide great flexibility in developing different types of RF MEMS switches and circuits. The ultimate target is to produce more powerful and sophisticated wireless appliances operating in handsets, base stations, and satellites with low power consumption and cost.

Design of Radiation Pattern Reconfigurable Antenna for Vital Signal Sensing Device Attached on Wristband and SAR Analysis on Human body (팔목 부착형 생체신호 측정기기에 사용가능한 방사패턴 재구성 안테나 설계 및 인체 SAR 영향 분석)

  • Lee, Chang Min;Jung, Chang Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.666-670
    • /
    • 2015
  • This paper presents radiation pattern reconfigurable antenna for Fitbit Flex wristband which detects vital signal. Also, the paper presents Specific Absorption Rate (SAR) from the loop-dipole radiation pattern reconfigurable antenna based on the position of human body. The proposed loop-dipole radiation pattern reconfigurable antenna produces two opposite side direction radiation pattern using two RF switches. The resonant frequency of the radiation pattern reconfigurable antenna is Bluetooth communication bandwidth (2.4 - 2.485 GHz) and the maximum gain of the proposed antenna is 1.96 dBi. The proposed antenna satisfied the standard SAR value of 1.6 W/kg in 1 g tissue of the human body when the Bluetooth communication input average power of 0.04 W is excited to five parts of human body (head, chest, stomach, back, wrist). The maximum SAR value of in this simulation is presented in the part of head.

Dual-Band Microstrip Patch Antenna with Switchable Orthogonal Linear Polarizations

  • Kim, Jeongin;Sung, Youngje
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.4
    • /
    • pp.215-220
    • /
    • 2018
  • This study presents a dual-band polarization-reconfigurable antenna that comprises a large square patch with a pair of corner-cut edges and two small square patches with a shorting via. Two PIN diodes are located between the large square patch and two small square patches. Depending on the bias state applied to the two PIN diodes, each small patch may be disconnected or connected to the large square patch. As a result, the proposed antenna can provide polarization reconfigurability between two orthogonal linear polarizations. Further, the proposed antenna operates at 2.51 GHz and 2.71 GHz. From the measured results, the proposed antenna shows a 10 dB bandwidth of 2.39% (2.49-2.55 GHz) and 2.58% (2.68-2.75 GHz). In this work, the frequency ratio can be easily controlled by changing the size of the small patch.

Adaptive Resource Allocation for MC-CDMA and OFDMA in Reconfigurable Radio Systems

  • Choi, Yonghoon
    • ETRI Journal
    • /
    • v.36 no.6
    • /
    • pp.953-959
    • /
    • 2014
  • This paper studies the uplink resource allocation for multiple radio access (MRA) in reconfigurable radio systems, where multiple-input and multiple-output (MIMO) multicarrier-code division multiple access (MC-CDMA) and MIMO orthogonal frequency-division multiple access (OFDMA) networks coexist. By assuming multi-radio user equipment with network-guided operation, the optimal resource allocation for MRA is analyzed as a cross-layer optimization framework with and without fairness consideration to maximize the uplink sum-rate capacity. Numerical results reveal that parallel MRA, which uses MC-CDMA and OFDMA networks concurrently, outperforms the performance of each MC-CDMA and OFDMA network by exploiting the multiuser selection diversity.

Package-Platformed Linear/Circular Polarization Reconfigurable Antenna Using an Integrated Silicon RF MEMS Switch

  • Hyeon, Ik-Jae;Jung, Tony J.;Lim, Sung-Joon;Baek, Chang-Wook
    • ETRI Journal
    • /
    • v.33 no.5
    • /
    • pp.802-805
    • /
    • 2011
  • This letter presents a K-band polarization reconfigurable antenna integrated with a silicon radio frequency MEMS switch into the form of a compact package. The proposed antenna can change its state from linear polarization (LP) to circular polarization (CP) by actuating the MEMS switch, which controls the configuration of the coupling ring slot. Low-loss quartz is used for a radiating patch substrate and at the same time for a packaging lid by stacking it onto the MEMS substrate, which can increase the system integrity. The fabricated antenna shows broadband impedance matching and exhibits high axial ratios better than 15 dB in the LP and small axial ratios in the CP, with a minimum value of 0.002 dB at 20.8 GHz in the K-band.

A Reconfigurable Multilayer Substrate Antenna for Aerospace Applications

  • amine, Ksiksi Mohamed;azizi, Mohamed karim;Gharsallah, Ali
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.9
    • /
    • pp.358-361
    • /
    • 2021
  • In this paper, we have simulated a rectangular microstrip patch antenna for aerospace applications based on graphen as a conductor and a multilayer substrate .as a result of the use of the graphen patch we obtained a reconfigurable antenna on the frequency range (0.6-0.7 terahertz) with a gain up to 12 db. The simulation of this antenna has been performed by using CST Microwave Studio, which is a commercially available finite integral based electromagnetic simulator.

Patent Trends on Reconfigurable Intelligent Surface (지능형 재구성 안테나 특허 동향)

  • Kwon, D.S.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.3
    • /
    • pp.119-132
    • /
    • 2021
  • To accommodate various mobile communication frequency bands, the study of metamaterial antennas have begun since the mid-2000s to solve the Trilemma problem between antenna gain-occupied bandwidth-size. As an adaptive reconfiguration function is required in a multi-array antenna system since 4G, the metamaterial array antenna using low-power variable elements has been used to change the basic structure of the antenna. Recently, reconfigurable intelligent surface (RIS), which is made of metasurface with reconfigurability, has been studied to effectively cope with the randomly varying radio channels and be used for various purposes such as reflection/transmission/modulation. As a result of RIS-related patent information analysis in this study, it was confirmed that most of the patents are metamaterial antennas and metamaterial array antennas, but the metasurface antenna technology was in the early stages. Particularly, as the intelligent metasurface antenna is in a more initial stage, the investment to R&D of RIS is urgent to secure patent competitiveness in B5G and 6G.