• Title/Summary/Keyword: Frequency-Dependent Grounding Impedance

Search Result 30, Processing Time 0.027 seconds

Characteristics of Grounding Impedances of Carbon Compound Grounding Electrodes (탄소혼합물 접지전극의 접지임피던스의 특성)

  • Lee, Kang-Soo;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.5
    • /
    • pp.54-60
    • /
    • 2011
  • This paper presents characteristics of frequency-dependent grounding impedance and transient grounding impedance for the carbon compound grounding electrode used in the installation of computerized electronic equipment and lightning protection system. The frequency-dependent grounding impedances were measured by applying sinusoidal currents in the frequency range from 100 [Hz] to 10[MHz], and the transient grounding impedances were examined by subjecting the impulse current with the front-time between 1~80[${\mu}s$]. As a result, the ground resistance of the carbon compound grounding electrode is less than that of another type grounding electrodes. The transient grounding impedance is relatively low and the conventional grounding impedance is rather lower than the ground resistance. The frequency-dependent grounding impedance of the carbon compound grounding electrode is capacitive and the grounding impedance is decreased with increasing the frequency of injected currents. Therefore in the case that the carbon compound grounding electrode is jointly used with large-scaled grounding electrodes, it is possible to reduce the high frequency grounding impedance of the integrated grounding electrode system.

Frequency-dependent grounding impedance of the counterpoise based on the dispersed currents

  • Choi, Jong-Hyuk;Lee, Bok-Hee;Paek, Seung-Kwon
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.589-595
    • /
    • 2012
  • When surges and electromagnetic pulses from lightning or power conversion devices are considered, it is desirable to evaluate grounding system performance as grounding impedance. In the case of large-sized grounding electrodes or long counterpoises, the grounding impedance is increased with increasing the frequency of injected current. The grounding impedance is increased by the inductance of grounding electrodes. This paper presents the measured results of frequency-dependent grounding impedance and impedance phase as a function of the length of counterpoises. In order to analyze the frequency-dependent grounding impedance of the counterpoises, the frequency-dependent current dissipation rates were measured and simulated by the distributed parameter circuit model reflecting the frequency-dependent relative resistivity and permittivity of soil. As a result, the ground current dissipation rate is proportional to the soil resistivity near the counterpoises in a low frequency. On the other hand, the ground current dissipation near the injection point is increased as the frequency of injected current increases. Since the high frequency ground current cannot reach the far end of long counterpoise, the grounding impedance of long counterpoise approaches that of the short one in the high frequency. The results obtained from this work could be applied in design of grounding systems.

Analysis for the Grounding Impedance of Vertical Grounding Electrodes using the Distributed Parameter Circuit Model (분포정수회로모델을 이용한 수직 접지전극의 접지임피던스의 분석)

  • Lee, Bok-Hee;Kim, Jong-Ho;Choi, Jong-Hyuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.6
    • /
    • pp.1103-1108
    • /
    • 2010
  • A grounding electrode has the transient grounding impedance characteristics against lightning surges. So the performance of grounding electrodes should be evaluated as a grounding impedance as well as the ground resistance. The frequency-dependent grounding impedance is varied with the shape and size of grounding electrode and is divided into both inductive and capacitive behaviors. This paper presents a theoretical analysis for the grounding impedance determined by the size of grounding electrode using the distributed parameter circuit model. EMTP and Matlab programs were used in calculating the frequency-dependent grounding impedances of vertical grounding electrodes. It was found that the frequency-dependent grounding characteristics of vertical grounding electrodes are characterized by the distributed parameters which are changed in the dimension of grounding electrodes.

Analysis of the Grounding Impedance of a Ground Rod Considering the Frequency-Dependent Resistivity and Relative Permittivity of Soil (토양의 저항률 및 비유전율의 주파수의존성을 고려한 접지봉의 접지임피던스의 해석)

  • Ahn, Chang-Hwan;Choi, Jong-Hyuk;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.1
    • /
    • pp.54-60
    • /
    • 2012
  • When the transient current with high frequency components such as lightning surges are injected the grounding electrodes, the performance of grounding electrodes should be evaluated as grounding impedance. It is restricted to analyze the grounding impedance by measurement approach since the grounding impedance is very different with the shape and size of grounding electrodes, resistivity and relative permittivity of soil and the frequency component of the injected current. So a variety of simulation approaches have been developed. Typically, the soil resistivity measured with low frequency and relative permittivity between 1 and 80 are used for simulation of the grounding impedance. However, the resistivity and relative permittivity of soil are changed with frequency of injected current. In this paper, the frequency-dependent resistivity and relative permittivity of soil are measured and these parameters are reflected in the simulation of the grounding impedance of a ground rod. The simulated results are compared with the measured results. As a result, the simulated results with frequency-dependent soil parameters show capacitive aspect like measured results in the frequency of lower than 100[kHz] and they are more consistent with the measured results in wide frequency range.

Determination of the Length of Coaxial Type Carbon Grounding Electrode to Minimize the Fluctuation of Grounding Impedance (접지임피던스의 변동이 최소가 되는 동축형 탄소접지전극의 길이의 산정)

  • Lee, Kang-Soo;Kim, Jong-Ho;Lee, Bock-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.12
    • /
    • pp.164-170
    • /
    • 2010
  • For the surge currents like lightning or ground fault currents containing high frequency components which cause the electromagnetic interferences for the electronic devices and communication equipment, the grounding impedances give the significantly composite characteristics which are dependent on the frequency of surge currents. In this paper, the analytical model and method for determining the optimal length of the newly developed coaxial type carbon ground electrode which has a little fluctuation in grounding impedance with frequency. The length of minimizing the fluctuation of grounding impedance by changing frequency from 100[Hz] to 1[MHz] was determined, and the validity of this proposed method was confirmed by comparing with the simulated and measured data.

Simulations of Frequency-dependent Impedance of Ground Rods Considering Multi-layered Soil Structures

  • Lee, Bok-Hee;Joe, Jeong-Hyeon;Choi, Jong-Hyuk
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.4
    • /
    • pp.531-537
    • /
    • 2009
  • Lightning has a broad frequency spectrum from DC to a few MHz. Consequently, the high frequency performance of grounding systems for protection against lightning should be evaluated, with the distributed parameter circuit model in a uniform soil being used to simulate grounding impedances. This paper proposes a simulation method which applies the distributed parameter circuit model for the frequency-dependent impedance of vertically driven ground rods by considering multi-layered soil structures where ground rods are buried. The Matlab program was used to calculate the frequency-dependent ground impedances for two ground rods of different lengths. As a result, an increase of the length of ground rod is not always followed by a decrease of grounding impedance, at least at a high frequency. The results obtained using the newly proposed simulation method considering multi-layered soil structures are in good agreement with the measured results.

An Analysis of Potential Interference Effects in the Vicinity of Ground Rod Depending on Frequency of Ground Currents (접지전류의 주파수에 따른 수직 접지전극 주변에서 전위간섭 영향 분석)

  • Lee, Bok-Hee;Cho, Yong-Seung;Choi, Jong-Hyuk;Yang, Soon-Man
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.12
    • /
    • pp.88-93
    • /
    • 2011
  • When the ground current is injected into the adjacent ground electrode, the potential interference is caused between ground electrodes, the ground potential interferences have been largely studied with power frequency fault currents. Many attempts to find the frequency-dependent grounding impedance report that the high frequency grounding impedance is very different with the ground resistance. This paper presents experimental data on the frequency-dependent potential interference effects in the vicinity of ground rod. The ground potential rises around the test ground rod of 4 or 6[m] were measured and discussed. As a result, the ground potential rises and potential interference factor are decreased with decreasing the grounding impedance. It was found that the lowering of grounding impedance is critical to reduce the ground potential interference effects.

Analysis of the Ground Impedance of Ground Grids Combined with the Carbon Ground Electrodes (탄소접지극이 병설된 접지그리드의 접지임피던스의 해석)

  • Lee, Bok-Hee;Um, Sang-Hyun;Kim, You-Ha;Lee, Kang-Soo;Jeon, Byung-Wook;Choi, Jong-Hyuk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.3
    • /
    • pp.36-42
    • /
    • 2013
  • This paper deals with the frequency-dependent ground impedance of ground grids combined with the carbon ground electrodes. Ground grids are generally valid for multipurpose grounding systems as well as lightning protection systems. The carbon ground electrodes may be supplementarily used to reduce the high frequency ground impedance and to improve the transient response to surge currents. The frequency-dependent ground impedances of ground grids combined with or without the carbon ground electrodes were measured and their simulations with due regard to frequency-dependent soil resistivity were implemented by using EMTP program and Matlab modeling. As a consequence, the ground impedance of ground grids combined with the carbon ground electrodes is significantly reduced when the test current is injected at the terminal of the carbon ground electrode. The measured and simulated data for the test ground grids fairly agree with each other. It was found that the proposed method of simulating the frequency-dependent ground impedance is distinguished. The simulation techniques of predicting accurately the ground impedances without actual measurements can be used in the design of grounding systems based on ground grids and the carbon ground electrodes.

Frequency-Dependent Grounding Impedances of Counterpoises Associated with Soil Resistivity (대지저항률에 따른 매설지선의 접지임피던스의 주파수의존성)

  • Kim, Tae-Ki;Choi, Young-Chul;Choi, Jong-Hyuk;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.5
    • /
    • pp.114-121
    • /
    • 2010
  • This paper deals with the frequency-dependent grounding impedances of counterpoises relevant to the soil resistivity, the length of counterpoises and the feeding point of test current. The grounding impedances of counterpoises buried in one-layered and two-layered soils were measured and analyzed in the frequency range from 1[kHz] to 10[MHz]. As a result, the frequency-dependent grounding impedances strongly depend on the soil resistivity, and the grounding impedances within the frequency of several tens [kHz] are capacitive behavior in high soil resistivity. When injecting the ground current to the end of counterpoise buried in soil with high resistivity, the grounding impedances in high frequency are increased.

Analysis of Transient Response Behavior and Frequency-Dependent Ground Impedances of the Carbon Ground Electrodes (탄소접지극 접지임피던스의 주파수의존성과 과도응답특성의 해석)

  • Lee, Bok-Hee;Lee, Kang-Soo;Kim, You-Ha;Um, Sang-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.2
    • /
    • pp.54-61
    • /
    • 2013
  • This paper presents transient response behavior and frequency-dependent ground impedance of a single carbon ground electrode. The ground impedance of the carbon ground electrode was measured as a function of frequency of injected currents and simulated by using the distributed parameter circuit model with due regard to the frequency-dependent soil parameters, and the transient response behavior of the carbon ground electrode against impulse currents were investigated. As a consequence, the frequency-dependent ground impedance of the carbon ground electrode showed the capacitive behavior, that is, the ground impedance decreases with increasing the frequency of injected currents and lowers at the fast front time of impulse current. It was found that the carbon ground electrode is effective in grounding system for lightning protection. The ground impedance simulated with due regard to the frequency-dependent soil parameters was in good agreement with the measured data. The adequacy of the simulation technique and the distributed parameter circuit model for the carbon ground electrode was verified. It is expected that the simulation methodology, which analyzes the frequency-dependent ground impedance of the carbon ground electrode proposed in this work, can be used in the design of a grounding system for protection against lightning.