• Title/Summary/Keyword: Frequency-Dependent Evaluation

Search Result 99, Processing Time 0.021 seconds

Modification of the fast fourier transform-based method by signal mirroring for accuracy quantification of thermal-hydraulic system code

  • Ha, Tae Wook;Jeong, Jae Jun;Choi, Ki Yong
    • Nuclear Engineering and Technology
    • /
    • v.49 no.5
    • /
    • pp.1100-1108
    • /
    • 2017
  • A thermal-hydraulic system code is an essential tool for the design and safety analysis of a nuclear power plant, and its accuracy quantification is very important for the code assessment and applications. The fast Fourier transform-based method (FFTBM) by signal mirroring (FFTBM-SM) has been used to quantify the accuracy of a system code by using a comparison of the experimental data and the calculated results. The method is an improved version of the FFTBM, and it is known that the FFTBM-SM judges the code accuracy in a more consistent and unbiased way. However, in some applications, unrealistic results have been obtained. In this study, it was found that accuracy quantification by FFTBM-SM is dependent on the frequency spectrum of the fast Fourier transform of experimental and error signals. The primary objective of this study is to reduce the frequency dependency of FFTBM-SM evaluation. For this, it was proposed to reduce the cut off frequency, which was introduced to cut off spurious contributions, in FFTBM-SM. A method to determine an appropriate cut off frequency was also proposed. The FFTBM-SM with the modified cut off frequency showed a significant improvement of the accuracy quantification.

Implementation of DYLAM-3 to Core Uncovery Frequency Estimation in Mid-Loop Operation

  • Kim, Dohyoung;Chang hyun Chung;Moosung Jae
    • Nuclear Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.531-540
    • /
    • 1998
  • The DYLAM-3 code which overcomes the limitation of event tree/fault tree was applied to LOOP (Loss of Off-site Power) in the mid-loop operation employing HEPs (Human Error Probabilities) supplied by the ASEP (Accident Sequence Evaluation Program) and the SEPLOT (Systematic Evaluation Procedure for Low power/shutdown Operation Task) procedure in this study. Thus the time history of core uncovery frequency during the mid-loop operation was obtained. The sensitivity calculations in the operator's actions to prevent core uncovery under LOOP in the mid-loop operation were carried out. The analysis using the time dependent HEP was performed on the primary feed & bleed which has the most significant effect on core uncovery frequency. As the result, the increment of frequency is shown after 200 minutes duration of simulation conditions. This signifies the possibility of increment in risk after 200 minutes. The primary feed & bleed showed the greatest impact on core uncovery frequency and the recovery of the SCS (Shutdown Cooling System) showed the least impact. Therefore the efforts should be taken on the primary feed & bleed to reduce the core uncovery frequency in the mid-loop operation. And the capability of DYLAM-3 in applying to the time dependent concerns could be demonstrated.

  • PDF

Transient Analysis of Hybrid Systems Composed of Lumped Elements and Frequency Dependent Lossy Disributed Interconnects

  • Ichikawa, Satoshi;Shimoda, Tomokazu
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.1096-1099
    • /
    • 2000
  • A method to analyze the high speed inter-connects that are composed of frequency dependent lossy distributed lines is presented. Network modeling of hybrid systems is implemented by using the modified nodal admittance matrix in the Laplace transformation domain. The network response is computed by different two methods. One method Is the asymptotic waveform evaluation (AWE) method and other is numerical Laplace inversion method. The merits and demerits of two methods are discussed by applying to several concrete illustrative networks.

  • PDF

Frequency-constrained polygonal topology optimization of functionally graded systems subject to dependent-pressure loads

  • Thanh T. Banh;Joowon Kang;Soomi Shin;Lee Dongkyu
    • Steel and Composite Structures
    • /
    • v.51 no.4
    • /
    • pp.363-375
    • /
    • 2024
  • Within the optimization field, addressing the intricate posed by fluidic pressure loads on functionally graded structures with frequency-related designs is a kind of complex design challenges. This paper thus introduces an innovative density-based topology optimization strategy for frequency-constraint functionally graded structures incorporating Darcy's law and a drainage term. It ensures consistent treatment of design-dependent fluidic pressure loads to frequency-related structures that dynamically adjust their direction and location throughout the design evolution. The porosity of each finite element, coupled with its drainage term, is intricately linked to its density variable through a Heaviside function, ensuring a seamless transition between solid and void phases. A design-specific pressure field is established by employing Darcy's law, and the associated partial differential equation is solved using finite element analysis. Subsequently, this pressure field is utilized to ascertain consistent nodal loads, enabling an efficient evaluation of load sensitivities through the adjoint-variable method. Moreover, this novel approach incorporates load-dependent structures, frequency constraints, functionally graded material models, and polygonal meshes, expanding its applicability and flexibility to a broader range of engineering scenarios. The proposed methodology's effectiveness and robustness are demonstrated through numerical examples, including fluidic pressure-loaded frequency-constraint structures undergoing small deformations, where compliance is minimized for structures optimized within specified resource constraints.

A Method of Simulating the Frequency-dependent Ground Impedance of Counterpoises (매설지선의 접지임피던스의 주파수의존성에 대한 모사기법)

  • Lee, Bok-Hee;Shin, Hee-Kyung;Seong, Chang-Hoon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.3
    • /
    • pp.73-79
    • /
    • 2012
  • A counterpoise is commonly employed in grounding systems installing near the ground surface of low resistivity soils and radial-type counterpoises are used in the limited space. Recently some studies on the evaluation of ground impedance of paralleling ground electrodes have carried out, but the data for providing the frequency-dependent ground impedances considering potential interferences are not yet sufficient. In order to provide the information about the design of grounding systems for surge protection, the simulations of the frequency-dependent ground impedance of various shaped counterpoises are carried out by using the distributed parameter circuit model including the effect of potential interferences. This paper presents the theoretical simulations and actual experiments of the frequency-dependent ground impedance of paralleling and 3 or 4-arms star counterpoises. The accuracy of the simulation methodology is examined by the comparison with the measured results, and the results show a good agreement between the simulation and the experiment.

Procedures of Biaxial Seismic Capacity Test and Seismic Performance Evaluation (수평이축방향 내진역량시험과 내진성능평가 절차)

  • 김재관;김익현;이재호
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.453-460
    • /
    • 2001
  • The seismic capacity of columns usually has been tested in uniaxial loading condition. The seismic performance used to be evaluated under the same assumption. Since the real earthquake motion is multi-directional, the effects of multi-directional excitation on the seismic capacity of structures need to be carefully examined. In this paper, a frequency dependent alternate biaxial cyclic loading test is proposed as an evaluation method of seismic capacity under multi-directional excitation. Four test specimens were made and tested to study the degradation of strength, stiffness and ductility under biaxial loading condition. A multi- directional excitation. The capacity is obtained using frequency dependent alternate biaxial cyclic loading test. The orthogonal effect is taken into account by increasing the demand.

  • PDF

Seismic evaluation of fluid-elevated tank-foundation/soil systems in frequency domain

  • Livaoglu, R.;Dogangun, A.
    • Structural Engineering and Mechanics
    • /
    • v.21 no.1
    • /
    • pp.101-119
    • /
    • 2005
  • An efficient methodology is presented to evaluate the seismic behavior of a Fluid-Elevated Tank-Foundation/Soil system taking the embedment effects into accounts. The frequency-dependent cone model is used for considering the elevated tank-foundation/soil interaction and the equivalent spring-mass model given in the Eurocode-8 is used for fluid-elevated tank interaction. Both models are combined to obtain the seismic response of the systems considering the sloshing effects of the fluid and frequency-dependent properties of soil. The analysis is carried out in the frequency domain with a modal analysis procedure. The presented methodology with less computational efforts takes account of; the soil and fluid interactions, the material and radiation damping effects of the elastic half-space, and the embedment effects. Some conclusions may be summarized as follows; the sloshing response is not practically affected by the change of properties in stiff soil such as S1 and S2 and embedment but affected in soft soil. On the other hand, these responses are not affected by embedment in stiff soils but affected in soft soils.

Frequency Dependent Resistivity and Relative Dielectric Constant with the Water Contents in Sand (모래의 수분함유량에 따른 비저항 및 비유전율의 주파수 의존성)

  • Lee, Bok-Hee;Cha, Eung-Suk;Choi, Jong-Hyuk;Choi, Young-Chul;Yoo, Yang-Woo;Ann, Chang-Hwan
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.348-351
    • /
    • 2009
  • In order to evaluate the performance of a grounding system against lightning or fault currents including high frequency components, the grounding impedance should be considered rather than its ground resistance. Recently, some researches on the evaluation and modeling of the grounding impedances have been carried out but the results have not been yet sufficient. This paper deals with the frequency dependence of the resistivity and relative dielectric constant of sand associated with water contents. As a result, the resistivity of sand is getting lower with increasing water content and it is nearly independent on the frequency in the range of less than 1MHz, and is decreased over the frequency range of above 1MHz. Also, the relative dielectric constant is rapidly decreased with the frequency in the range of less than 10kHz, but it is nearly not dependent on the frequency over the frequency range of 10kHz. It was found from this work that the frequency dependance of resistivity and relative dielectric constant of soil should be considered in designing the grounding systems for protection against lightning or surges.

  • PDF

Robust Stability eEaluation of Multi-loop Control Systems Based on Experimental Data of Frequency Response

  • Chen, Hong;Okuyama, Yoshifumi;Takemori, Fumiaki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.360-363
    • /
    • 1995
  • In this paper, we describe the composition of frequency response bands based on experimental data of plants (controlled systems) with uncertainty and nonlinearity, and the robust stability evaluation of feedback control systems. Analysis and design of control systems using the upper and lower bounds of such experimental data would be effective as a practicable method which is not heavily dependent upon mathematical models such as the transfer function. First, we present a method to composite gain characteristic bands of frequency response of cascade connected plants with uncertainty and a recurrent inequality for the composition. Next, evaluation methods of the robust stability of multi-loop control systems obtained through feedback from the output terminals and multi-loop control systems obtained through feedback into the input terminals are described. In actual control systems, experimental data of frequency responses often depends on the amplitude of input. Therefore, we present the evaluation method of the nominal value and the width of the frequency response band in such a case, and finally give numerical examples based on virtual experimental data.

  • PDF

Verification of Frequency-Dependent Equivalent Linear Method (주파수 의존성을 고려한 등가선형해석기법의 검증)

  • Jeong, Chang-Gyun;Kwak, Dong-Yeop;Park, Du-Hee
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.12
    • /
    • pp.113-120
    • /
    • 2008
  • One-dimensional site response analysis is widely used to simulate the seismic site effects. The equivalent linear analysis, which is the most widely used type of site response analysis, is essentially a linear method. The method applies constant shear modulus and damping throughout the frequency range of the input motion, ignoring the dependence of the soil response on the loading frequency. A new type of equivalent linear analysis method that can simulate the frequency dependence of the soil behavior via frequency-strain curve was developed. Various forms of frequency-strain curves were proposed, and all curves were asserted to increase the accuracy of the solution. However, its validity has not been extensively proven and the effect of the shape of the frequency-strain curve is not known. This paper used two previously proposed frequency-strain curves and three additional curves developed in this study to evaluate the accuracy of the frequency-dependent equivalent linear method and the influence of the shape of the frequency-strain curves. In the evaluation, six recordings from three case histories were used. The results of the case study indicated that the shape of the frequency-strain curve has a dominant influence on the calculated response, and that the frequency dependent analysis can enhance the accuracy of the solution. However, a curve that results in the best match for all case histories did not exist and the optimum curve varied for each case. Since the optimum frequency-strain curve can not be defined, it is recommended that a suite of curves be used in the analysis.