• Title/Summary/Keyword: Frequency response characteristics

Search Result 1,541, Processing Time 0.038 seconds

Flight Dynamic Identification of a Model Helicopter using CIFER®(II) - Frequency Response Analysis - (CIFER®를 이용한 무인 헬리콥터의 동특성 분석 (II) - 주파수 응답 해석 -)

  • Bae, Yeoung-Hwan;Koo, Young-Mo
    • Journal of Biosystems Engineering
    • /
    • v.36 no.6
    • /
    • pp.476-483
    • /
    • 2011
  • The aerial application using an unmanned helicopter has been already utilized and an attitude controller would be developed to enhance the operational convenience and safety of the operator. For a preliminary study of designing flight controller, a state space model for an RC helicopter would be identified. Frequency sweep flight tests were performed and time history data were acquired in the previous study. In this study, frequency response of the flight test data of a small unmanned helicopter was analyzed by using the CIFER software. The time history flight data consisted of three replications each for collective pitch, aileron, elevator and rudder sweep inputs. A total of 36 frequency responses were obtained for the four control stick inputs and nine outputs including linear velocities and accelerations and angular velocities in 3-axis. The results showed coherence values higher than 0.6 for every primary control inputs and corresponding on-axis outputs for the frequency range from 0.07 to 4 Hz. Also the analysis of conditioned frequency response showed its effectiveness in evaluating cross coupling effects. Based on the results, the dynamic characteristics of the model helicopter can further be analyzed in terms of transfer functions and the undamped natural frequency and damping ratio of each critical mode.

A Study on Dynamic Vibration Absorber Using Zener's Model (Zener 모델을 사용한 동흡진기 특성 연구)

  • Oh, Il-Kwon;Lim, Seung-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.159-163
    • /
    • 2005
  • A dynamic vibration absorber using the Zener's model has been taken into account with respect to frequency response characteristics. The concept of the tuned mass damper with a single degree of freedom has been well applied for many industrial fields, because many researchers have extensively studied various basic characteristics, performance and optimization methods for long time. The Zener's model has an additional spring, which is connected between a damper and a mass, while the tuned mass damper with a single degree of freedom consists of a mass, a spring and a damper connected in parallel. In previous works, the basic performance and characteristics of the Zoner's model as a dynamic vibration absorber have not been investigated. In this study, the frequency response characteristics according to the parameter change of the Zener's model have been described. In order to find the optimum value of several parameters, we use iterative scheme with three dimensional frequency response diagram by MATLAB programming. Present results shows the Zener's model can give more good damping performance than the simple tuned mass damper, and the numerical of optimization method should be developed for the efficient vibration absorbtion.

  • PDF

A Study of Dynamic Response in a Pipeline for Design of Hydraulic Circut (유압회로 설계를위한 유압관로에서의 동특성연구)

  • Kim, Ji-Hwan;Kim, Kwang-Ho;Shin, You-Hwan;You, Young-Tae
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2024-2030
    • /
    • 2003
  • Design for a quite operation of fluid power system requires the understanding of noise and vibration characteristics of the system. This paper presents a dynamic response for design of hydraulic circuit. Experimental investigations on the attenuation characteristics of pressure ripple in automotive power steering hydraulic pipe with dynamic response of hydraulic pipe line is examined. Also, a mathematical model of hydraulic pipe is proposed to support design of the hydraulic circuit and analyze the attenuation characteristics of pressure ripples in a hydraulic pipe line. And analyze the impedance characteristics to determine the postion to construct accumulator for attenuation the pressure pulsation. The experimental results show that the pulsation attenuation characteristics of hydraulic hoses is remarkably affected by the flexible metal tube inserted coaxially inside a hydraulic hose with a finite length as well as viscoelastic properties of hose wall. It is also shown that the predicted results by the model proposed here agree well with the measured results over a wied range of frequency;

  • PDF

Analysis of Dynamic Characteristics of High Speed Trains Using a Time Varying Frequency Transform (시간-주파수 변환을 이용한 고속철도차량의 동특성 분석)

  • Lee, Jun-Seok;Choi, Sung-Hoon;Kim, Sang-Soo;Park, Choon-Soo
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.841-848
    • /
    • 2008
  • This paper examined dynamic characteristics of high speed trains using a time varying frequency transform. Fourier transform based methods are frequently used for the calculation of the dynamic characteristics of trains in the frequency domain, but they cannot represent the time-varying characteristics. Therefore it is necessary to examine their characteristics using a time-varying frequency transform. For the examination, the non-stationary vibration of wheelset, bogie, and carbody are measured using accelerometers and stored in a data aquisition system. They are processed with localization of the data by modulating with a window function, and Fourier transform is taken to each localized data, called the short-time Fourier transform. From the processed results, time varying auto-spectral density, cross-spectral density, frequency response, and coherence functions have been calculated. From the analysis, it is confirmed that the time varying frequency transform is a useful method for analyzing the dynamic characteristics of high speed trains.

  • PDF

A Study on the characteristics of vibration induced by Subway operation (지하철 운행에 따른 진동특성에 관한 연구)

  • 배동명;신창혁;이창훈;박상곤
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.332-339
    • /
    • 2000
  • In this paper the characteristics of vibration induced by subway trains running on track is discussed. The quantitative prediction of the vibration level and the countermeasure for reduction of necessary, is of importance for the better environment. It was made the constructed Bundang line as first step with the modified Young-Dan type to basis on the Japanese Young-Dan type. In this paper it was measured and analyzed to two region (①Susuh-Bokjung, ②Chorim-Suhyun region) of this, at present operational Bundang line when averaging velocity of train is 60(㎞/h). As the response characteristics of frequency induced by subway operation, it was confirmed that frequency band of neighborhood of 30∼80Hz in generally dominant. Also to assess the quantitative vibration as response level to be measured for each point of two region in subway operation, the vibrational response level was measured at the state to be not subway operation. And the level was approximately 1/5∼1/10 level comparing to subway operation.

  • PDF

Response Characteristics of Organic Gas for Polymer Coating Materials (고분자 감응성막의 유기가스 반응 특성)

  • 김정명;유승엽;장정수;권영수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.273-276
    • /
    • 1995
  • In this paper, the response characteristics of organic gases were investigated by using quartz crystal microbalance(Q.C.M) with different coating materials. The method for pattern was discussed in order to develope gas sensing system using neural network and pattern recognition. we analyzed the response characteristics by the area of frequency shift, which mean affinities of gases for coating material. The results shows that the Parameter made by the area of frequency shift has possibility to be used for pattern recognition and neural network. we found that each gas had different decrease pattern for coating material.

  • PDF

Experimental Investigation Into the Dynamic Characteristics of Flexible Matrix Composite Driveshafts (유연복합재 구동축의 동특성에 관한 실험 분석)

  • Shin Eung-Soo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.2
    • /
    • pp.93-98
    • /
    • 2006
  • This study provides a comprehensive experimental study on the dynamic characteristics of a flexible matrix composite(FMC) driveshaft. A primary objective is to verify the analytic results of the FMC drivetrain based on the equivalent complex modulus approach and the classical lamination theory. A test rig has been constructed, which consists of a FMC shaft, a foundation beam, bearings, external dampers and a driving motor. The frequency response functions and transient responses are obtained from the external excitation and the spin-up testings. It turns out that the analytic results are in good agreement with the experimental ones.

Analysis of Response Characteristics for Organic Gas of Polymeric Sensitive Films by Using Q. C. M. (수정진동자에 의한 감응성막의 유기가스 응답특성 분석)

  • 김경철;김정명;장상목;권영수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.409-412
    • /
    • 1996
  • In this paper, the response characteristics of organic gases were investigated by using quartz crystal microbalance(Q.C.M) with different polymeric sensitive materials. The new linear parameter was discussed in order to develope gas sensing system using neural network and pattern recognition. We analyzed the response characteristics by the area of resonant frequency shift of quartz crystal, which mean affinities of organic gases for polymeric sensitive firm. The experimental results shows that the parameter made by the area of frequency shift which was linear with injection amount of organic gases has possibility to be used for pattern recognition and neural network. And they have different normalized pattern.

  • PDF

Analysis on the Harmonic Response of Can-type Structure with ANSYS (ANSYS를 이용한 캔형 구조물의 주파수응답특성 해석)

  • Seo, Pan-Seok;Choi, Nam-Ho;Koo, Kyung-Wan;Kim, Jong-Seok;Han, Sang-Ok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05c
    • /
    • pp.79-83
    • /
    • 2001
  • This is an investigation on the propagation characteristics of AE signal in GIS. The selection of measuring position and resonant frequency of AE sensor is one of the most important factor to optimize a diagnostic system. And natural frequency and harmonic response characteristics are indispensable to optimize those factors. So, in this investigation, we make a 3D model of 362kV GIS and make a modal and harmonic analysis to survey the vibro-acoustic property. Through the result of the analysis, we can make a further understanding on the vibro-acoustic characteristics of GIS.

  • PDF

Experimental Investigation into the Dynamic Characteristics of Flexible Matrix Composite Driveshafts (유연복합재 구동축의 동특성에 관한 실험 분석)

  • Shin, Eung-Soo;Lim, Byung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.123-126
    • /
    • 2005
  • This study provides a comprehensive experimental study on the dynamic characteristics of a flexible matrix composite(FMC) driveshaft. A primary objective is to verify the analytic results of the FMC drivetrain based on the equivalent complex modulus approach and the classical lamination theory. A testrig has been constructed, which consists of a FMC shaft, a foundation beam, bearings, external dampers and a driving motor. The frequency response functions and transient responses are obtained from the external excitation and the spinup testings. It turns out that the analytic results are in good agreement with the experimental ones.

  • PDF