• Title/Summary/Keyword: Frequency response characteristics

Search Result 1,543, Processing Time 0.031 seconds

Analytical and experimental modal analyses of a highway bridge model

  • Altunisik, Ahmet Can;Bayraktar, Alemdar;Sevim, Baris
    • Computers and Concrete
    • /
    • v.12 no.6
    • /
    • pp.803-818
    • /
    • 2013
  • In this study, analytical and experimental modal analyses of a scaled bridge model are carried out to extract the dynamic characteristics such as natural frequency, mode shapes and damping ratios. For this purpose, a scaled bridge model is constructed in laboratory conditions. Three dimensional finite element model of the bridge is constituted and dynamic characteristics are determined, analytically. To identify the dynamic characteristics experimentally; Experimental Modal Analyses (ambient and forced vibration tests) are conducted to the bridge model. In the ambient vibration tests, natural excitations are provided and the response of the bridge model is measured. Sensitivity accelerometers are placed to collect signals from the measurements. The signals collected from the tests are processed by Operational Modal Analysis; and the dynamic characteristics of the bridge model are estimated using Enhanced Frequency Domain Decomposition and Stochastic Subspace Identification methods. In the forced vibration tests, excitation of the bridge model is induced by an impact hammer and the frequency response functions are obtained. From the finite element analyses, a total of 8 natural frequencies are attained between 28.33 and 313.5 Hz. Considering the first eight mode shapes, these modes can be classified into longitudinal, transverse and vertical modes. It is seen that the dynamic characteristics obtained from the ambient and forced vibration tests are close to each other. It can be stated that the both of Enhanced Frequency Domain Decomposition and Stochastic Subspace Identification methods are very useful to identify the dynamic characteristics of the bridge model. The first eight natural frequencies are obtained from experimental measurements between 25.00-299.5 Hz. In addition, the dynamic characteristics obtained from the finite element analyses have a good correlation with experimental frequencies and mode shapes. The MAC values obtained between 90-100% and 80-100% using experimental results and experimental-analytical results, respectively.

Frequency Range Expansion of Pneumatic Exciter by Using Dual-chamber (이중챔버를 이용한 공압가진기의 주파수 범위 확장)

  • Park, Young-Woo;Kim, Kwang-Joon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.10
    • /
    • pp.909-919
    • /
    • 2013
  • Pneumatic exciters can be good replacements of electrodynamic, piezoelectric and hydraulic exciters owing to simple structure and large exciting force. One problem to be solved is a slow response caused by compressibility of air. Desirable frequency response characteristics of exciter are constant magnitude and zero degree phase, because users want no time delay between input signal and output force. For this reason, frequency range of pneumatic exciters is limited about 0~1 Hz. Therefore, expansion of frequency range is an important issue when designing the pneumatic exciter. In this paper, the pneumatic exciter which has same structure with active pneumatic isolator is dealt with. The dynamic characteristics are presented, and its limitation of expanding frequency range is shown based on analytical studies. Then the pneumatic exciter with dual-chamber is suggested to overcome this problem. Based on simulation study, a design method is presented.

Vibration characteristics change of a base-isolated building with semi-active dampers before, during, and after the 2011 Great East Japan earthquake

  • Dan, Maki;Ishizawa, Yuji;Tanaka, Sho;Nakahara, Shuchi;Wakayama, Shizuka;Kohiyama, Masayuki
    • Earthquakes and Structures
    • /
    • v.8 no.4
    • /
    • pp.889-913
    • /
    • 2015
  • Structural vibration characteristics of a semi-active base-isolated building were investigated using seismic observation records including those of the 2011 Great East Japan earthquake (Tohoku earthquake). Three different types of analyses were conducted. First, we investigated the long-term changes in the natural frequencies and damping factors by using an ARX model and confirmed that the natural frequency of the superstructure decreased slightly after the main shock of the Tohoku earthquake. Second, we investigated short-term changes in the natural frequencies and damping factors during the main shock by using the N4SID method and observed different transition characteristics between the first and second modes. In the second mode, in which the superstructure response is most significant, the natural frequency changed depending on the response amplitude. In addition, at the beginning of the ground motion, the identified first natural frequency was high possibly as a result of sliding friction. Third, we compared the natural frequencies and damping factors between the conditions of a properly functional semi-active control system and a nonfunctional system, by using the records of the aftershocks of the Tohoku earthquake. However, we could not detect major differences because the response was probably influenced by sliding friction, which had a more significant effect on damping characteristics than did the semi-active dampers.

Speed Control of Oil Hydaulic Motor Systems Using an Electrohydraulic Servo Valve (전기.유압 서보 밸브를 이용한 유압모터계의 회전수 제어)

  • 김도태
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.405-410
    • /
    • 1999
  • Hydraulic pipeline between servo valve and actuator affect the dynamic characteristics of electrohydraulic servo systems in serveral ways. This paper deal with the speed control of oil hydraulic gear motor using electrohydraulic servo valve. The frequency and transient response of electrohydraulic servo valve coupled to a gear motor is anlayzed. In particular, the effect of short and long hydraulic pipelines between servo valve and gear motor is investigated. The dynamic characteristics of the speed control systems of gear motor with short pipeline is first described via frequency response experiments with small signal linearized analysis. Loner pipeline is applied distributed parameter pipeline model with consideration of frequency dependent viscous friction.

  • PDF

3-D Vibration Modes of the Tire in Ground Contact and Its Effects on Wheel and Axle When Excited by a Vertical Impact at the Center of Contact Patch (접지면 중앙에서 수직방향 가진에 의한 타이어의 3차원 진동모드가 휠/축에 미치는 영향)

  • Kim, Yong-Woo;Nam, Jin-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.4
    • /
    • pp.325-332
    • /
    • 2004
  • Tire vibration modes are known to play a key role in vehicle ride and comfort characteristics. Inputs to the tire such as impacts, rough road surface, tire nonuniformities, and tread patterns can potentially excite tire vibration. In this study, experimental modal analysis on the tire with ground contact are performed by impacting the tire in the radial direction at the center of contact patch. To investigate which modes of tire influence the vibration of wheel and axle when the tire is in contact with ground, the vibration characteristics such as frequency response functions, natural frequencies and their mode shapes from tire to wheel/axle are examined.

Dynamic Characteristics of Laminated Rotor Core of Electric Motor Products (생산 전동기 로터 적층 코어의 동특성 조사)

  • Kim, Kwan-Young;Moon, Byung-Yun;Lee, Soo-Mok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.275-278
    • /
    • 2005
  • The dynamic characteristics of rotor shafts for electric motors were investigated through the modal tests. The natural frequencies and modal dampings in each manufacturing stage of rotor core assembly were analyzed from the frequency response functions fer all 6 motors of a product model. The deviation of the each individual modal feature was found dependent on the mode shapes as well as the rotor assembly stage. The core stacking itself is known to widen the deviation of modal properties but fellowing processes of rotor bar insertion and swaging are confirmed to reduce the deviation. Finally the equivalent diameter of core part was estimated from the comparison of measured and calculated results to include the stiffness of core part.

  • PDF

Experimental Study on the Seismic Structural Responses Subjected to Different Earthquakes (지진특성에 따른 구조물의 지진응답실험)

  • 최인길;김형규;김민규;전영선
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.82-89
    • /
    • 2003
  • Near-field ground motions exhibit special characteristics that are different from ordinary far-field ground motions. In this study the shaking table tests were conducted to evaluate the effect of earthquake ground motions with different characteristics on the response of the structure. The ground motions used in this study were the scenario earthquake, design earthquake, and Chi-Chi earthquake measured in TCU052 station. These earthquakes have different frequency contents. The test results show that the frequency content of ground motion is very important to the response of structures. The floor responses of structure were greatly affected by the higher modal frequencies, as well as the fundamental frequency. The responses of third floor were significantly reduced due to the interaction between the structure and the base isolated mass installed at the third floor.

  • PDF

Driving-Condition-Dependent Optical Transmission Characteristics of an STN LCD (구동조건에 따른 STN LCD의 광투과 특성)

  • 고형일;정태혁;이상찬;윤태훈;김재창
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.10
    • /
    • pp.35-42
    • /
    • 1995
  • In this paper the driving-condition-dependent optical transmission characteristics of an STN LCD are studied. The optical transmission properties are measured for the applied voltage waveform is varied. Also, the optimum ranges of the M signal frequency and the frame frequency are investigated. An LCD is modeled by the equivalent circuit to study the effect of the parameter variation on the frequency response.

  • PDF

Characteristics of Power Spectrum according to Variation of Passenger Number and Vehicle Speed (둔턱 진행 차량의 승객수와 속도에 따른 파워스펙트럼 특성분석)

  • Lee, Hyuk;Kim, Jong-Do;Yoon, Moon-chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.1
    • /
    • pp.41-48
    • /
    • 2022
  • Vehicle vibration was introduced in the time and frequency domains using fast Fourier transform (FFT) analysis. In particular, a vibration mode analysis and characteristics of the frequency response function (FRF) in a sport utility vehicle (SUV) passing over a bump barrier at different speeds was performed systematically. The response behavior of the theoretical acceleration was obtained using a numerical method applied to the forced vibration model. The amplitude and frequency of the external force on the vehicle cause various power spectra with individual intrinsic system frequencies. In this regard, several modes of power spectra were acquired from the spectra and are discussed in this paper. The proposed technique can be used for monitoring the acceleration in a vehicle passing over a bump barrier. To acquire acceleration signals, various experimental runs were performed using the SUV. These acceleration signals were then used to acquire the FRF and to conduct mode analysis. The vehicle characteristics according to the vehicle condition were analyzed using FRF. In addition, the vehicle structural system and bump passing frequencies were discriminated based on their power spectra and other FRF spectra.

Characteristics of Vertical/Horizontal Ratio of Response Spectrum from Domestic Ground Motions (국내 관측자료를 이용한 응답스펙트럼의 수직/수평비 특성 분석)

  • Kim, Junkyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.1
    • /
    • pp.81-87
    • /
    • 2011
  • The characteristics of vertical to horizontal ratio of response spectrum from 20 recent earthquakes were analysed. Response spectrum of 260 horizontal and 130 vertical ground motions were normalized by peak ground acceleration at each resonance frequency from 0.1 to 50Hz. It has been identified that the ratio of vertical to horizontal response spectrum has strong dependancy on epicentral distance and resonance frequency. The ratio of vertical to horizontal response spectrum for the 0-50km epicentral distance group are larger than 2/3 values, which is a standard engineering rule-of-thumb V/H=2/3, at resonance frequency above 7-8Hz. All the 3 groups such as 50-100, 100-150- and 150-200km epicentral distance have shown larger values of vertical to horizontal ratio than 2/3 at resonance frequency above 15Hz and also are larger than 2/3 at resonance frequency below 8-10Hz. Even though there are differences in specific resonance frequency values which depend on the epicentral distance group, we should be careful of seismic design of vertical component of the structures winch are located within the range of about 200km distance. form the potentially seismic causative faults.