• Title/Summary/Keyword: Frequency optimization

Search Result 1,200, Processing Time 0.027 seconds

Hybrid BFPSO Approach for Effective Tuning of PID Controller for Load Frequency Control Application in an Interconnected Power System

  • Anbarasi, S.;Muralidharan, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1027-1037
    • /
    • 2017
  • Penetration of renewable energy sources makes the modern interconnected power systems to have more intelligence and flexibility in the control. Hence, it is essential to maintain the system frequency and tie-line power exchange at nominal values using Load Frequency Control (LFC) for efficient, economic and reliable operation of power systems. In this paper, intelligent tuning of the Proportional Integral Derivative (PID) controller for LFC in an interconnected power system is considered as a main objective. The chosen problem is formulated as an optimization problem and the optimal gain parameters of PID controllers are computed with three innovative swarm intelligent algorithms named Particle Swarm Optimization (PSO), Bacterial Foraging Optimization Algorithm (BFOA) and hybrid Bacterial Foraging Particle Swarm Optimization (BFPSO) and a comparative study is made between them. A new objective function designed with necessary time domain specifications using weighted sum approach is also offered in this report and compared with conventional objective functions. All the simulation results clearly reveal that, the hybrid BFPSO tuned PID controller with proposed objective function has better control performances over other optimization methodologies.

A new PSRO algorithm for frequency constraint truss shape and size optimization

  • Kaveh, A.;Zolghadr, A.
    • Structural Engineering and Mechanics
    • /
    • v.52 no.3
    • /
    • pp.445-468
    • /
    • 2014
  • In this paper a new particle swarm ray optimization algorithm is proposed for truss shape and size optimization with natural frequency constraints. These problems are believed to represent nonlinear and non-convex search spaces with several local optima and therefore are suitable for examining the capabilities of new algorithms. The proposed algorithm can be viewed as a hybridization of Particle Swarm Optimization (PSO) and the recently proposed Ray Optimization (RO) algorithms. In fact the exploration capabilities of the PSO are tried to be promoted using some concepts of the RO. Five numerical examples are examined in order to inspect the viability of the proposed algorithm. The results are compared with those of the PSO and some other existing algorithms. It is shown that the proposed algorithm obtains lighter structures in comparison to other methods most of the time. As will be discussed, the algorithm's performance can be attributed to its appropriate exploration/exploitation balance.

Optimization of Frame Structures with Natural Frequency Constraints (고유진동수 제약조건을 고려한 프레임 구조물의 최적화)

  • Kim, Bong-Ik;Lee, Seong-Dae
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.109-113
    • /
    • 2010
  • We present the minimum weight optimum design of cross sectional for frame structures subject to natural frequency. The optimum design in this paper employ discrete and continuous design variables and Genetic Algorithms. In this paper, Genetic Algorithms is used in optimization process, and be used the method of Elitism and penalty parameters in order to improved fitness in the reproduction process. For 1-Bay 2-Story frame structure, in examples, continuous and discrete design variables are used, and W-section (No.1~No.64), from AISC, discrete data are used in discrete optimization. In this case, Exhaustive search are used for finding global optimum. Continuous variables are used for 1-Bay 7-Story frame structure. Two typical frame structure optimization examples are employed to demonstrate the availability of Genetic Algorithms for solving minimum weight optimum of frame structures with fundamental and multi frequency.

Structural dynamic optimization with probability constraints of frequency and mode

  • Chen, Jian-Jun;Che, Jian-Wen;Sun, Huai-An;Ma, Hong-Bo;Cui, Ming-Tao
    • Structural Engineering and Mechanics
    • /
    • v.13 no.5
    • /
    • pp.479-490
    • /
    • 2002
  • The structural dynamic optimization problem based on probability is studied. Considering the randomness of structural physical parameters and the given constraint values, we develop a dynamic optimization mathematical model of engineering structures with the probability constraints of frequency, forbidden frequency domain and the vibration mode. The sensitivity of structural dynamic characteristics based on probability is derived. Two examples illustrate that the optimization model and the method applied are rational and efficient.

MULTI-OBJECTIVE OPTIMIZATION OF THE INNER REINFORCEMENT FOR A VEHICLE'S HOOD CONSIDERING STATIC STIFFNESS AND NATURAL FREQUENCY

  • Choi, S.H.;Kim, S.R.;Park, J.Y.;Han, S.Y.
    • International Journal of Automotive Technology
    • /
    • v.8 no.3
    • /
    • pp.337-342
    • /
    • 2007
  • A multi-objective optimization technique was implemented to obtain optimal topologies of the inner reinforcement for a vehicle's hood simultaneously considering the static stiffness of bending and torsion and natural frequency. In addition, a smoothing scheme was used to suppress the checkerboard patterns in the ESO method. Two models with different curvature were chosen in order to investigate the effect of curvature on the static stiffness and natural frequency of the inner reinforcement. A scale factor was employed to properly reflect the effect of each objective function. From several combinations of weighting factors, a Pareto-optimal topology solution was obtained. As the weighting factor for the elastic strain efficiency went from 1 to 0, the optimal topologies transmitted from the optimal topology of a static stiffness problem to that of a natural frequency problem. It was also found that the higher curvature model had a larger static stiffness and natural frequency than the lower curvature model. From the results, it is concluded that the ESO method with a smoothing scheme was effectively applied to topology optimization of the inner reinforcement of a vehicle's hood.

Structural damage detection based on MAC flexibility and frequency using moth-flame algorithm

  • Ghannadi, Parsa;Kourehli, Seyed Sina
    • Structural Engineering and Mechanics
    • /
    • v.70 no.6
    • /
    • pp.649-659
    • /
    • 2019
  • Vibration-based structural damage detection through optimization algorithms and minimization of objective function has recently become an interesting research topic. Application of various objective functions as well as optimization algorithms may affect damage diagnosis quality. This paper proposes a new damage identification method using Moth-Flame Optimization (MFO). MFO is a nature-inspired algorithm based on moth's ability to navigate in dark. Objective function consists of a term with modal assurance criterion flexibility and natural frequency. To show the performance of the said method, two numerical examples including truss and shear frame have been studied. Furthermore, Los Alamos National Laboratory test structure was used for validation purposes. Finite element model for both experimental and numerical examples was created by MATLAB software to extract modal properties of the structure. Mode shapes and natural frequencies were contaminated with noise in above mentioned numerical examples. In the meantime, one of the classical optimization algorithms called particle swarm optimization was compared with MFO. In short, results obtained from numerical and experimental examples showed that the presented method is efficient in damage identification.

A Study for the Reliability Based Design Optimization of the Automobile Suspension Part (자동차 현가장치 부품에 대한 신뢰성 기반 최적설계에 관한 연구)

  • 이종홍;유정훈;임홍재
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.123-130
    • /
    • 2004
  • The automobile suspension system is composed of parts that affect performances of a vehicle such as ride quality, handling characteristics, straight performance and steering effort, etc. Moreover, by using the finite element analysis the cost for the initial design step can be decreased. In the design of a suspension system, usually system vibration and structural rigidity must be considered simultaneously to satisfy dynamic and static requirements simultaneously. In this paper, we consider the weight reduction and the increase of the first eigen-frequency of a suspension part, the upper control arm, especially using topology optimization and size optimization. Firstly, we obtain the initial design to maximize the first eigen-frequency using topology optimization. Then, we apply the multi-objective parameter optimization method to satisfy both the weight reduction and the increase of the first eigen-frequency. The design variables are varying during the optimization process for the multi-objective. Therefore, we can obtain the deterministic values of the design variables not only to satisfy the terms of variation limits but also to optimize the two design objectives at the same time. Finally, we have executed reliability based optimal design on the upper control arm using the Monte-Carlo method with importance sampling method for the optimal design result with 98% reliability.

A Study on the Optimization of the Natural Frequency of a Ring-Stiffened Cylindrical Shell (링 보강 원통셸의 고유진동수 최적화에 관한 연구)

  • Chang, Jin-Geon;Lee, Young-Shin;Yang, Tae-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.3
    • /
    • pp.305-311
    • /
    • 2012
  • For the optimization of the fundamental natural frequency of stiffened cylindrical shells, simulations were performed for cylindrical shells that were stiffened with between one and five ring stiffeners. ANSYS 11.0 was used to simulate the optimization for the natural frequency. The Subproblem Approximation Method was applied as the optimization method. The design function of the optimization was the geometry of the T-shaped ring stiffener, and the constraint function was the maximum additional volume, constrained to a 10% increase. The objective function of the optimization was chosen to maximize the fundamental natural frequency. The performance index for optimal design was defined as the ratio of the natural frequency to the volume of the unstiffened and stiffened shells. The optimal performance index was obtained for the shell stiffened with three rings.

Frequency-constrained polygonal topology optimization of functionally graded systems subject to dependent-pressure loads

  • Thanh T. Banh;Joowon Kang;Soomi Shin;Lee Dongkyu
    • Steel and Composite Structures
    • /
    • v.51 no.4
    • /
    • pp.363-375
    • /
    • 2024
  • Within the optimization field, addressing the intricate posed by fluidic pressure loads on functionally graded structures with frequency-related designs is a kind of complex design challenges. This paper thus introduces an innovative density-based topology optimization strategy for frequency-constraint functionally graded structures incorporating Darcy's law and a drainage term. It ensures consistent treatment of design-dependent fluidic pressure loads to frequency-related structures that dynamically adjust their direction and location throughout the design evolution. The porosity of each finite element, coupled with its drainage term, is intricately linked to its density variable through a Heaviside function, ensuring a seamless transition between solid and void phases. A design-specific pressure field is established by employing Darcy's law, and the associated partial differential equation is solved using finite element analysis. Subsequently, this pressure field is utilized to ascertain consistent nodal loads, enabling an efficient evaluation of load sensitivities through the adjoint-variable method. Moreover, this novel approach incorporates load-dependent structures, frequency constraints, functionally graded material models, and polygonal meshes, expanding its applicability and flexibility to a broader range of engineering scenarios. The proposed methodology's effectiveness and robustness are demonstrated through numerical examples, including fluidic pressure-loaded frequency-constraint structures undergoing small deformations, where compliance is minimized for structures optimized within specified resource constraints.

Classification of Induction Machine Faults using Time Frequency Representation and Particle Swarm Optimization

  • Medoued, A.;Lebaroud, A.;Laifa, A.;Sayad, D.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.170-177
    • /
    • 2014
  • This paper presents a new method of classification of the induction machine faults using Time Frequency Representation, Particle Swarm Optimization and artificial neural network. The essence of the feature extraction is to project from faulty machine to a low size signal time-frequency representation (TFR), which is deliberately designed for maximizing the separability between classes, a distinct TFR is designed for each class. The feature vectors size is optimized using Particle Swarm Optimization method (PSO). The classifier is designed using an artificial neural network. This method allows an accurate classification independently of load level. The introduction of the PSO in the classification procedure has given good results using the reduced size of the feature vectors obtained by the optimization process. These results are validated on a 5.5-kW induction motor test bench.