• Title/Summary/Keyword: Frequency of Performance

Search Result 10,130, Processing Time 0.037 seconds

Sweet Area Determination by Performance Sensitivity Analysis for an Automotive Vehicle Suspension (자동차용 현가장치의 성능감도해석에 의한 안정승차영역의 결정)

  • Park, Ho;Hahn, Chang-Su;Kim, Byeong-Woo;Kim, Dong-Gyu
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.1
    • /
    • pp.92-100
    • /
    • 2003
  • Using a quarter car model, an analytic method for performance estimation of a vehicle suspension system with respect to frequency response, RMS response and performance index is presented. From frequency response function, compromization of response performance to the whole frequency range is verified and from RMS response and performance index, sensitivity of ride md handling characteristics are examined. Using a full car model, sweet area(stable ride area) are determined and performance sensitivity is estimated according to the change of feedback gains. In order to esimate the output sensitivity, response we is displayed using a 3-dimensional contour plot. Design data n suggested for optimal design parameter esimation, which maximize the performance of the given suspension system.

Performance verification and improvement of the frequency analysis unit for GIS Preventive & Diagnostic Monitoring System (GIS 예방진단시스템 주파수 분석장치 성능개선 및 검증)

  • Kim, Won-Gyu;Kim, Min-Soo;Baek, Young-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.3
    • /
    • pp.485-491
    • /
    • 2015
  • This paper shows the design improvement and test model of FAU (Frequency Analysis Unit) in PDD (Partial Discharge Diagnosis system) for 800kV GIS (Gas Insulated Switchgear). We found some problems during operation of previous FAU, such as the aging of fiber-optic converter that can cause communication error, the malfunction of signal analysis circuit etc. And then we solved those problems by design improvement and verified the performance through type test. To monitor partial discharge, the performance of UHF sensor is important but the performance of frequency analysis unit is also very important. So we solved communication error, the malfunction of signal analysis circuit and then increased the operation reliability of FAU by improving fiber-optic converter and signal analysis circuit. Accredited testing laboratory carried out the performance verification test according to performance test criteria and procedure of reliability test standards, IEC-60225, 61000 and 60068 etc. We confirmed the test results which correspond with the performance test criteria.

Performance Analysis of OFDM System Considering Carrier Frequency Offset in Wireless LAN Channel Environment

  • Kim, Ji-Woong;Kang, Heau-Jo;Lee, Kwon-Hyun
    • Journal of information and communication convergence engineering
    • /
    • v.2 no.1
    • /
    • pp.1-4
    • /
    • 2004
  • In this paper, We analyzes how a synchronization error affects receiving system when using OFDM(Orthogonal Frequency Division Multiplexing) transmission method in wireless LAN channel environment in which we can efficiently transmit wide-band information data. As a performance improvement method, performance distortion can be improved by applying convolution coding. As a result, in OFDM system, we could see that the higher a frequency offset is, the worse performance will be, and we could see that there was performance improvement by applying convolution coding in OFDM system in order to reach (BER=$10^{-3}$). However, when we use 64QAM (64Quadrature Amplitude Modulation), there was a huge influence between carriers by frequency offset at 0.05, 0.1.

Design Criteria and Performance of Space-Frequency Bit-Interleaved Coded Modulations in Frequency-Selective Rayleigh Fading Channels

  • Park, Dae-Young;Lee, Byeong-Gi
    • Journal of Communications and Networks
    • /
    • v.5 no.2
    • /
    • pp.141-149
    • /
    • 2003
  • In this paper, we investigate design criteria and the performance of the space-frequency bit-interleaved coded modulation (SF-BICM) systems in frequency-selective Rayleigh fading channels. To determine the key parameters that affect the performance of SF-BICM, we derive the pairwise error probability (PEP) in terms of the determinant of the matrix corresponding to any two codewords. We prove that the bit-interleavers do the function of distributing the nonzero bits uniformly such that two or more nonzero bits are seldom distributed into the symbols that are transmitted in the same frequency bin. This implies that the bit-interleavers transform an SF-BICM system into an equivalent 1-antenna system. Based on this, we present design criteria of SFBICM systems that maximizes the diversity order and the coding gain. Then, we analyze the performance of SF-BICM for the case of 2-transmit antennas and 2-multipaths by deriving a frame error rate (FER) bound. The derived bound is accurate and requires only the distance spectrum of the constituent codes of SF-BICM. Numerical results reveal that the bound is tight enough to estimate the performance of SF-BICM very accurately.

Performance of selective combining according to channel selection decision method of frequency diversity in underwater frequency selective channel (수중 주파수 선택적 채널에서 주파수 다이버시티의 채널 선택 판정법에 따른 선택 합성법의 성능)

  • Lee, Chaehui;Jeong, Hyunsoo;Park, Kyu-Chil;Park, Jihyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.3
    • /
    • pp.436-442
    • /
    • 2022
  • In this paper, the performance of the selective combining according to the channel selection decision method of frequency diversity is evaluated in the underwater frequency selective channel. The underwater acoustic channel in the shallow sea has a complex multipath characteristic by combining various environmental factors such as boundary surface reflection and sound wave refraction according to the water temperature layer. In particular, frequency selectivity due to multipath causes energy fluctuation in a communication channel, which reduces SNR (Signal to Noise Ratio) and deteriorates communication performance. In this paper, we applied the frequency diversity technique using multiple channels to secure the communication performance according to the frequency selectivity by multipath. For each channel, 4-FSK (Frequency Shift Keying) and selective combining were applied, the performance was evaluated by applying the maximum value, average value, and majority decision of the signal in order to decide the demodulation channel selection of the selective combining.

A Study on the Performance of Frequency Hopping Spread Spectrum Technique in the presence of Interfering Channel (간섭이 있는 채널에서의 Frequency Hopping Spread Spectrum Technique에 관한 연구)

  • 김성국;한영렬
    • Proceedings of the Korean Institute of Communication Sciences Conference
    • /
    • 1983.10a
    • /
    • pp.93-96
    • /
    • 1983
  • This paper is a study on the performance of ASK combined with Frequency-Hopping spread Spectrum techniques in the presence of interfering channel with uniformly distribyted frequency.

  • PDF

Seismic Response Amplification Factors of Nuclear Power Plants for Seismic Performance Evaluation of Structures and Equipment due to High-frequency Earthquakes (구조물 및 기기의 내진성능 평가를 위한 고주파수 지진에 의한 원자력발전소의 지진응답 증폭계수)

  • Eem, Seung-Hyun;Choi, In-Kil;Jeon, Bub-Gyu;Kwag, Shinyoung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.123-128
    • /
    • 2020
  • Analysis of the 2016 Gyeongju earthquake and the 2017 Pohang earthquake showed the characteristics of a typical high-frequency earthquake with many high-frequency components, short time strong motion duration, and large peak ground acceleration relative to the magnitude of the earthquake. Domestic nuclear power plants were designed and evaluated based on NRC's Regulatory Guide 1.60 design response spectrum, which had a great deal of energy in the low-frequency range. Therefore, nuclear power plants should carry out seismic verification and seismic performance evaluation of systems, structures, and components by reflecting the domestic characteristics of earthquakes. In this study, high-frequency amplification factors that can be used for seismic verification and seismic performance evaluation of nuclear power plant systems, structures, and equipment were analyzed. In order to analyze the high-frequency amplification factor, five sets of seismic time history were generated, which were matched with the uniform hazard response spectrum to reflect the characteristics of domestic earthquake motion. The nuclear power plant was subjected to seismic analysis for the construction of the Korean standard nuclear power plant, OPR1000, which is a reactor building, an auxiliary building assembly, a component cooling water heat exchanger building, and an essential service water building. Based on the results of the seismic analysis, a high-frequency amplification factor was derived upon the calculation of the floor response spectrum of the important locations of nuclear power plants. The high-frequency amplification factor can be effectively used for the seismic verification and seismic performance evaluation of electric equipment which are sensitive to high-frequency earthquakes.

Performance Evaluation of Advanced Frequency Estimation Technique using 765kV Modeling Data (765kV 모델링 데이터에 의한 개선된 주파수 추정기법의 성능 평가)

  • Park, Chul-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.3
    • /
    • pp.253-257
    • /
    • 2010
  • The frequency is an important operation parameter for the control, protection, and stability of a power system. The frequency as a key index of power quality can be indicative of system abnormal conditions and disturbances. Due to the sudden change in generation and loads or faults in power system, the frequency is supposed to deviate from its nominal value. It is essential that the frequency must be maintained very close to its nominal frequency. An accurate monitoring of the power frequency is essential to optimal operation and prevention for wide area blackout. As most conventional frequency estimation schemes are based on DFT filter, it has been pointed out that the gain error could cause defects when the frequency is deviated from nominal value. This paper presents an advanced frequency estimation technique using gain compensation to improve the performance of DFT filter based techniques. To evaluate performance of the proposed algorithm, the 765kV T/L system in Korea is simulated by EMTP-RV software. The proposed technique can reduce the gain error caused when the power system frequency deviates from nominal value.

Performance sensitivity analysis of feedback system for adaptive control of a vehicle suspension (자동차 현가장치의 적응제어를 위한 feedback 시스템의 성능감도 해석)

  • Park, H;Jeon, E. S.;Oh, J. E.
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.35-45
    • /
    • 1991
  • A linear quarter model of a vehicle suspension system is built and simulated. Especially the so-called sensitivity analysis is conducted in order to show its applicability to design problems, and sensitivity function is determined in the frequency domain. The change of frequency response function is predicted, which depends on the design parameter variation and the property is verified by computer simulation. Typical performance measures, namely, sprung mass acceleration, suspension deflection, and tire deflection are examined. The vehicle model is analyzed for ist performance sensitivity as a function of the system's feedback gains. The variable feedback gains are selected as the spring and damping coefficients. Frequency response, RMS response, and performance index of the performance evaluation variables are considered and three-dimensional and contour plots of response surfaces are formed to examine output sensitivity to suspension feedback. Performance trade-offs over the entire frequency spectrum are identified from the FRF, and that between ride quality and handling characteristics are examined from the RMS responses.

  • PDF

Performance Improvement of OFDM Systems in Broadband Wireless Communication Channel Environments (광대역 무선통신 채널 환경에서 OFDM 시스템의 성능개선)

  • Kang, Heau-Jo
    • Journal of Advanced Navigation Technology
    • /
    • v.11 no.1
    • /
    • pp.37-42
    • /
    • 2007
  • In this paper, we analyzed the performance of OFDM systems with adaptive equalizer that considers the frequency offset, the frequency non-selective fading, and two-path microwave Rummer's model channels. First of all, it is analyzed that the performance degradation, which is caused by the offset and the non-selective fading channel, through simulation. As the results of the simulation, the performance of the OFDM system is greatly influenced by the offset and channels. The more the frequency offset is, the worse the performance of the OFDM system is. However, if the adaptive equalizer is adopted to the OFDM system, the performance is enhanced up to the limited rang.

  • PDF