• Title/Summary/Keyword: Frequency domain iterative equalizer

Search Result 4, Processing Time 0.019 seconds

Performance of Iterative Soft Decision Feedback Equalizers for Single-Carrier Transmission

  • Jeon, Taehyun;Yoon, Seokhyun;Kim, Kyungho
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1280-1285
    • /
    • 2017
  • In this paper, we consider iterative soft-decision feedback equalizers (sDFE), a.k.a. turbo equalizers for single-carrier transmission. Turbo equalizer takes log-likelihood ratio (LLR) feedback from channel decoder and convert the LLR into symbol estimates and variances to be used for the LLR update at the sDFE. Specifically, we consider both time domain and frequency-domain sDFE and compare their performances. The results shows that frequency-domain sDFE performs better than time-domain one and also that considerable gain can be obtained especially when the channel has deep nulls.

MF based Frequency Domain Iterative Equalization for Single-Carrier Transmission with EST Pre-coder (EST Pre-coder를 가진 Single Carrier 전송을 위한 MF기반의 주파수영역 반복 등화기법)

  • Choi, Yun-Seok;Lee, Yeon-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.5C
    • /
    • pp.295-301
    • /
    • 2011
  • In [1], it has been shown that the energy spreading transform (EST) based iterative equalizer (IE) could enhance its performance by improving the reliability of the decision feedback symbols without the help of the complicated channel decoder. In the matched filter (MF) based IE proposed in [1], however, its feedforward filter (FFF) has been designed in the frequency domain while its feedback filter (FBF) in the time domain. So its complexity increases proportional to the channel memory length. To solve this problem, in this paper, both FFF and FBF are designed in the frequency domain. This enables the proposed frequency domain IE (FD-IE) to achieve the lower complexity over the conventional method in the highly dispersive channel. In addition, simulation results demonstrate that the BER performance of the proposed method is the same as the conventional.

Channel estimation scheme of terrestrial DTV transmission employing unique-word based SC-FDE (Unique-word 채용한 SC-FDE 기반 지상파 DTV 전송의 채널 추정 기법)

  • Shin, Dong-Chul;Kim, Jae-Kil;Ahn, Jae-Min
    • Journal of Broadcast Engineering
    • /
    • v.16 no.2
    • /
    • pp.207-215
    • /
    • 2011
  • A signal passed through multi-path channel suffers ISI(Inter-Symbol Interference) and severe distortions caused by channel delay spread and noise components at the SC-FDE(Single Carrier with Frequency Domain Equalizer) transmission. Conventional UW(Unique-Word) based SC-FDE iterative channel estimation improves channel estimation performance by smoothing estimated CIR(Channel Impulse Response) of the noise components outside the channel length at time domain and restoring the broken cyclic property through UW reconstruction. In this paper, we propose channel estimation scheme through noise suppression within channel length. To suppress the noise, we estimate noise standard deviation as estimated CIR of the noise components outside the channel length and make criteria of the noise standard deviation gain that doesn't affect the original signal samples. When estimated CIR samples within channel length are less than the criteria value using the noise standard deviation and gain, the noise components are removed. Simulation results show that the proposed channel estimation scheme brings good channel MSE(Mean Square Error) and good BER(Bit Error Rate) performance.

Performance Comparison and Analysis of SC-FDMA Systems employing IB-DFE (IB-DFE를 적용한 SC-FDMA 시스템의 성능 비교 분석)

  • Cho, Jae-Deok;Ahn, Sang-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.9C
    • /
    • pp.906-914
    • /
    • 2009
  • SC-FDMA is employed in the 3GPP-LTE standard as the uplink transmission scheme. SC-FDMA has advantages that the signal has a low PAPR property and a simple equalizer such as FD-LE can be implemented. But FD-LE has inferior performance to Hybrid-DFE composed of frequency-domain feedforward filter and time-domain feedback filter. Recently, several IB-DFE algorithms have been proposed to overcome the disadvantages of implementation and processing complexity of Hybrid-DFE and to obtain superior performance to FD-LE. In this paper, we apply several IB-DFE algorithms to 3GPP-LTE uplink system and compare their performance by calculating BER. We investigate the effects of channel estimation errors and Doppler shift on performance. Finally, by analyzing computational complexity of IB-DFEs, we present some criteria to choose appropriate algorithm and to decide the number of iterative processes.