• Title/Summary/Keyword: Frequency domain approach

Search Result 388, Processing Time 0.026 seconds

Quantitative nondestructive evaluation of thin plate structures using the complete frequency information from impact testing

  • Lee, Sang-Youl;Rus, Guillermo;Park, Tae-Hyo
    • Structural Engineering and Mechanics
    • /
    • v.28 no.5
    • /
    • pp.525-548
    • /
    • 2008
  • This article deals the theory for solving an inverse problem of plate structures using the frequency-domain information instead of classical time-domain delays or free vibration eigenmodes or eigenvalues. A reduced set of output parameters characterizing the defect is used as a regularization technique to drastically overcome noise problems that appear in imaging techniques. A deconvolution scheme from an undamaged specimen overrides uncertainties about the input signal and other coherent noises. This approach provides the advantage that it is not necessary to visually identify the portion of the signal that contains the information about the defect. The theoretical model for Quantitative nondestructive evaluation, the relationship between the real and ideal models, the finite element method (FEM) for the forward problem, and inverse procedure for detecting the defects are developed. The theoretical formulation is experimentally verified using dynamic responses of a steel plate under impact loading at several points. The signal synthesized by FEM, the residual, and its components are analyzed for different choices of time window. The noise effects are taken into account in the inversion strategy by designing a filter for the cost functional to be minimized. The technique is focused toward a exible and rapid inspection of large areas, by recovering the position of the defect by means of a single accelerometer, overriding experimental calibration, and using a reduced number of impact events.

Numerical Modeling of Antenna Transmission for Borehole Ground-Penetrating Radar -Code Development- (시추공 레이다를 위한 안테나 전파의 수치 모델링 -프로그램 개발-)

  • Chang, Han-Nu-Ree;Kim, Hee-Joon
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.265-270
    • /
    • 2006
  • High-frequency electromagnetic (EM) wave propagation phenomena associated with borehole ground-penetrating radar (GPR) surveys are complex. To improve the understanding of governing physical processes, we present a finite-difference time-domain solution of Maxwell's equations in cylindrical coordinates. This approach allows us to model the full EM wavefield associated with borehole GPR surveys. The algorithm can be easily implemented perfectly matched layers for absorbing boundaries, frequency-dependent media, and finite-length transmitter antenna.

  • PDF

Application of wavelet transform for the impulse response of pile

  • Ni, Sheng-Huoo;Yang, Yu-Zhang;Lyu, Chia-Rong
    • Smart Structures and Systems
    • /
    • v.19 no.5
    • /
    • pp.513-521
    • /
    • 2017
  • The purpose of this paper is to study the capabilities of the impulse response method in length and flaw detecting for concrete piles and provide a suggested method to find small-size flaws in piles. In this work, wavelet transform is used to decompose the recorded time domain signal into a series of levels. These levels are narrowband, so the mix of different dominant bandwidths can be avoided. In this study, the impulse response method is used to analyze the signal obtained from the wavelet transform to improve the judgment of the flaw signal so as to detect the flaw location. This study provides a new way of thinking in non-destructive testing detection. The results show that the length of a pile is easy to be detected in the traditional reflection time or frequency domain method. However, the small flaws within pile are difficult to be found using these methods. The proposed approach in this paper is able to greatly improve the results of small-size flaw detection within piles by reducing the effects of any noise and clarifying the signal in the frequency domains.

Impulse response method for a centrifugal pump in pipeline systems (원심펌프 관로계에 대한 임펄스 응답법 적용 연구)

  • Hur, Jisung;Kim, Hyunjoon;Song, Yongsuk;Kim, Sanghyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.5
    • /
    • pp.481-489
    • /
    • 2016
  • Method of characteristic(MOC) has been widely used as a transient analysis technique for pressurized pipeline systems. There are substantial studies using MOC for the water hammer triggered through instantaneous valve closures, pump stoppage and pump startup for pipelines systems equipped with a centrifugal pump. Considering restrictions of MOC associated with courant number condition for complicated pipeline systems, an impulse response method(IRM) was developed in the frequency domain. this study implements the impact of centrifugal pump using transfer function in frequency domain approach. Using pump performance curve and the affinity law, this study formulated transfer functions which relate complex pressure head at upstream of pump system to that of downstream location. Simulations of simple reservoir-pump-valve system using IRM with formulated transfer function were similar to those obtained through MOC.

Multiple-Model Probabilistic Design of Repetitive Controllers (연속반복학습제어의 복수모형 확률설계기법)

  • Lee, Soo-Cheol
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.13 no.2
    • /
    • pp.1-7
    • /
    • 2008
  • This paper presents a method to design a repetitive controller that is robust to variations in the system parameters. The uncertain parameters are specified probabilistically by their probability distribution functions. Instead of working with the distribution functions directly, the repetitive controller is designed from a set of models that are generated from the specified probability functions. With this multiple-model design approach, any number of uncertain parameters that follow any type of distribution functions can be treated. furthermore, the controller is derived by minimizing a frequency-domain based cost function that produces monotonic convergence of the tracking error as a function of repetition number. Numerical illustrations show how the proposed multiple-model design method produces a repetitive controller that is significantly more robust than an optimal repetitive controller designed from a single nominal model of the system.

  • PDF

DETECTING OF SCUFFING USING ACOUSTIC EMISSION

  • Kim, J.H.;Kim, T.W.;Cho, Y.J.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.191-192
    • /
    • 2002
  • The scuffing failure is a critical problem in modern machine components, especially for the requirement of high efficiency and small size. In this study. scuffing experiments are conducted using Acoustic Emission(AE) measurement by an indirect sensing approach to detect scuffing failure. Using AE signals we con get and indication about the state of the friction processes, about the quality of solid and liquid layers on the contacting surface in real time. The FFT(Fast Fourier Transform)analyses of the AE signal are used to understand the interfacial interaction and the relationship between the AE signal and the state of contact is presented.

  • PDF

Human Posture Dynamics in Response to the Horizontal Vibration

  • Shin, Young-Kyun;Fard, M.A.;Inooka, Hikaru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1504-1508
    • /
    • 2003
  • The functional behavior of each body segments were investigated with respect to human standing posture when they were exposed to the horizontal vibration in the sagittal plane. This study is processed by experimental approach. The data is analyzed, both in the time domain and in the frequency domain. Random and multisinusoidal vibration was used as input. The ankle, hip, and head were employed as the significant body segments. High relative movements were present between hip and head, and there was no significant relationship between ankle and head. Variations of visual input produced a significant postural effect.

  • PDF

Design of Optimal Finline Taper in Multilayered structure with Spectral Domain Immittance Approach

  • Song Seung-Hyun;Cheon Chang-Yul;Hahn Song-Yop;Kim Hyeong-Seok
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.21-23
    • /
    • 2002
  • In millimeter wave applications, it is often necessary to use transitions between waveguide and planar circuits. Finline structures can be used effectively to this purpose. In multilayered case, it is necessary to analyze the structure with numerical method such as spectral domain immittance method. The design procedure uses tile cutoff frequency for each taper width. The dispersion data in a single layer are compared with those in literature. The performance of the designed finline taper is verified with the FEM simulation using HFSS.

  • PDF

A New Model Approximation Using the ADP and MISE of Continuous-Time Systems (운송시간 제어계에 있어서 보조분모분수식과 MISE를 이용한 새로운모델 간략법)

  • 권오신;황형수;김성중
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.9
    • /
    • pp.660-669
    • /
    • 1987
  • Routh approximation method is the most computationally attractive. But this method may cause time-response error because this method does not match the time-response directly. In this paper a new mixed method for obtaining stable reduced-order models for high-order continuous-time systems is proposed. It makes use of the advantages of the Routh approximation method and the Minimization of Integral Squared Error(MISE) criterion approach. In this mixed method the characteristic polynomial of the reduced-order model is first obtained from that of original system by using the Auxiliary Denominator Polynomial(ADP). The numerator polynomial is then determined so as to minimize the intergral squared-error of unit step responses. The advantages of the propsed method are that the reduced models are always stable if the original system are stable and the frequency domain and time domain characteristic of the original system will be preserved in the reduced models.

  • PDF

A Generalized Fourier Transform Based on a Periodic Window

  • Yoo, Kyung-Yul
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.4E
    • /
    • pp.53-57
    • /
    • 1996
  • An extension of the well-known Fourier transform is developed in this paper. It is denoted as the generalized Fourier transform(GFT), since it encompasses the Fourier transform as its special case. The first idea of this extension can be found on [1]. In the definition of the N-point discrete GFT, it first construct a passband in time which functions as a window in the time domain. An appropriate interpretation of each variables are introduced during the definition of the GFT, followed by the formal derivation of the inverse GFT. This transform pair is similar to the windowing in the frequency domain such as the subband coding technique (or filter bank approach) and could be extended to the wavelet transform.

  • PDF