• Title/Summary/Keyword: Frequency component

Search Result 1,806, Processing Time 0.034 seconds

Grouping Method of Loads to Verify the Aggregation of Component Load Models (개별부하 축약을 검증하기 위한 집단부하 구성방법에 관한 연구)

  • Ji, Pyeong-Shik;Lee, Jong-Pil;Lim, Jae-Yoon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.4
    • /
    • pp.172-179
    • /
    • 2001
  • A component based method out of load modeling is to aggregate component load model according to the composition rate of each component load at load bus based on the circuit theory. But the most of component loads respond complex nonlinear characteristics respect to voltage and frequency variation due to the control techniques and semiconductor elements applied to component load. It needs to verify this approach through actual experiment of the aggregation of component load even if it can be down. To identify this aggregation method well known, this paper is proposed the classifying method of component load characteristics for component loads to group by quantitative analysis. The component load characteristics were divided into several types by KSOM (kohonen self organizing map), which can classify multi-dimension vector, component load pattern, into two-dimension vector. Some ambiguous cases happened from KSOM were classified by the proposed closing degree.

  • PDF

Suppressing Artefacts in the ECG by Independent Component Analysis (독립성분 분석기법에 의한 심전도 신호의 왜곡 보정)

  • Kim, Jeong-Hwan;Kim, Kyeong-Seop;Kim, Hyun-Tae;Lee, Jeong-Whan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.6
    • /
    • pp.825-832
    • /
    • 2013
  • In this study, Independent Component Analysis (ICA) algorithms are suggested to extract the original ECG part from the mixed signal contaminated with the unwanted frequency components and especially 60Hz power line disturbances. With this aim, we implement a novel method to suppress the baseline-wandering disturbances and power line artefacts contained in patch-electrodes sensory ECG data by separating the unmixed signal with finding the optimal weight W based on Kurtosis value. With applying brutal force and gradient ascent searching algorithm to find W, we can conclude that the unwanted frequency components especially in the ambulatory ECG data can be eliminated by Independent Component Analysis.

Fast Extraction of Symmetrical Components from Distorted Three-Phase Signals Based on Asynchronous-Rotational Reference Frame

  • Hao, Tianqu;Gao, Feng;Xu, Tao
    • Journal of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.1045-1053
    • /
    • 2019
  • A symmetrical component decomposition scheme utilizing the characteristics of the asynchronous rotational reference frame transformation is proposed in this paper for the extraction of the positive and negative sequence components of distorted three-phase grid voltages. The undesired frequency component can be removed using a specially designed series coordinate transformation and half-cycle delays, where the delay can be controlled by adjusting the frequency of the rotating reference frame. The extracted symmetrical component can then be compensated based on the applied coordinated transformation. The dynamic response of the proposed algorithm is improved when compared to that of conventional methods. The effectiveness of the proposed algorithm is verified by simulation and experimental results.

Module level EMC verification method for replacement items in nuclear power plant

  • Hee-Taek Lim;Moon-Gi Min;Hyun-Ki Kim;Gwang-Hyun Lee;Chae-Hyun Yang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2407-2418
    • /
    • 2023
  • Internal replaceable electronic module substitutions can impact EMC (ElectroMagnetic Compatibility) qualification testing and results if EMC testing is conducted at the cabinet level. The impact of component substitutions on EMC qualification results therefore should be evaluated. If a qualitative evaluation is not adequate to ensure that the modified product will not impact the cabinet level EMC qualification results, a new qualification testing should be conducted. Component level retesting should be conducted under electromagnetically equivalent conditions with the cabinet level test. This paper analyzes the propagation of conducted susceptibility test waveforms in a representative cabinet and evaluates the impact of component substitutions on cabinet level EMC qualification results according to the location of the replacement items. A guideline for a qualitative evaluation of the impact of component substitutions is described based on the propagation of the conducted susceptibility test waveforms. A module level test method is also described based on an analysis of the shielding effectiveness of the cabinet.

A Load Modeling to Utilize Power System Analysis Software (전력계통해석용 프로그램에 적용하기 위한 부하모델링)

  • 지평식
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.4
    • /
    • pp.96-101
    • /
    • 1999
  • Load model is very important to improve accuracy of stability analysis and load flow study in power systems. A power system bus is composed by various loads, and loads have different power consumption due to voltage/frequency changing. Thus the effect of voltage/frequency changing must he considered to load mxleling. In this research, ANN was used to construct component load moddel for more accurate load mxleling. Typical residential load was selected, and characteristics exrerimented on voltage/frequency changing. Acquired data used to construct the component ANN model, and aggregation method of component load model was presented based on component load model and composition rate. Furthennore, it's transfomlation method to the mathematical load model to he used at the traditional power system analysis soft wares was also presented.sented.

  • PDF

A Study on the Roll Damping of Two-Dimensional Cylinders (2차원 주상체의 횡요감쇠에 대한 연구)

  • Yuck Rae H.;Lee Dong H.;Choi Hang S.;Jin Young M.;Bang Chang S.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.197-200
    • /
    • 2002
  • In this paper, roll damping coefficients for a non-conventional cross section, which is herein named as 'step' model, are investigated numerically and experimentally. Experiments are extensively carried out to estimate the roll damping coefficients. Numerical estimations are also made with the help of numerical codes. For convenience, the roll damping is divided into wave-making component and viscous component. The wave-making component is determined using a potential code and the viscous component using a viscous flow code, in which the fluid domain is taken as unbounded. In order to validate the present approach, a typical cross section with bilge is considered and our results are compared with published data. The comparison shows a good agreement qualitatively. For the step model, numerical results are compared well with experimental data besides some quantitative discrepancies at a certain range of frequency. It is thought that the discrepancy might be caused by the ignorance of the free surface in viscous computations. It is found in the case of the step model that not only the viscous component but also the wave component increases considerably compared to the section with bilge.

  • PDF

Creep Damage Evaluation of High-Temperature Pipeline Material for Fossil Power Plant by Ultrasonic Frequency Analysis Spectrum Method (초음파 주파수분석법에 의한 발전소 고온배관재료의 크리프손상 평가)

  • Chung, Min-Hwa;Lee, Sang-Guk
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.2 s.32
    • /
    • pp.90-98
    • /
    • 1999
  • Boiler high-temperature pipelines such as main steam pipe, header and steam drum in fossil power plants are degraded by creep damage due to severe operationg conditions like high temperature and high pressure for an extended period time. Such material degradation lead to various component faliures causing serious accidents at the plant. Conventional measurement techniques such as replica method, electric resistance method, and hardness test method have such disadvantages as complex preparation and measurement procedures, too many control parameters, and therefore, low practicality and they were applied only to component surfaces with good accessibility. In this study, both artificial creep degradation test using life prediction formula and frequency analysis by ultrasonic tests for their preparing creep degraded specimens have been carried out for the purpose of nondestructive evaluation for creep damage which can occur in high-temperature pipelline of fossil power plant. As a result of ultrasonic tests for crept specimens, we confirmed that the high frequency side spectra decrease and central frequency components shift to low frequency bans, and bandwiths decrease as increasing creep damage in backwall echoes.

  • PDF

Uncertain-parameter sensitivity of earthquake input energy to base-isolated structure

  • Takewaki, Izuru
    • Structural Engineering and Mechanics
    • /
    • v.20 no.3
    • /
    • pp.347-362
    • /
    • 2005
  • The input energy to a base-isolated (BI) building during an earthquake is considered and formulated in the frequency domain. The frequency-domain approach for input energy computation has some notable advantages over the conventional time-domain approach. Sensitivities of the input energy to the BI building are derived with respect to uncertain parameters in the base-isolation system. It is demonstrated that the input energy can be of a compact form via the frequency integration of the product between the input component (Fourier amplitude spectrum of acceleration) and the structural model component (so-called energy transfer function). With the help of this compact form, it is shown that the formulation of earthquake input energy in the frequency domain is essential for deriving the sensitivities of the input energy to the BI building with respect to uncertain parameters. The sensitivity expressions provide us with information on the most unfavorable combination of the uncertain parameters which leads to the maximum energy input.

A Study on the Application of Wavelet Transform to Faults Current Discrimination (Wavelet 변환을 이용한 고장전류의 판별에 관한 연구)

  • 조현우;정종원;윤기영;김태우;이준탁
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.213-217
    • /
    • 2002
  • Recently the subject of "wavelet analysis" has be drawn by both mathematical and engineering application fields such as Signal Processing, Compression/Decomposition, Wavelet-Neural Network, Statistics and etc. Even though its similar to courier analysis, wavelet is a versatile tool with much mathematical content and great potential for applications. Especially, wavelet transform uses localizable various mother wavelet functions in time-frequency domain. Therefore, wavelet transform has good time-analysis ability for high frequency component, and has good frequency-analysis ability for low frequency component. Using the discriminative ability is more easy method than other conventional techniques. In this paper, Morlet wavelet transform was applied to discriminate the kind of line fault by acquired data from real power transformation network. The experimental result presented that Morlet wavelet transform is easier, and more useful method than the FFW (Fast courier Transform).ransform).

  • PDF

Optimization of ground response analysis using wavelet-based transfer function technique

  • Moghaddam, Amir Bazrafshan;Bagheripour, Mohammad H.
    • Geomechanics and Engineering
    • /
    • v.7 no.2
    • /
    • pp.149-164
    • /
    • 2014
  • One of the most advanced classes of techniques for ground response analysis is based on the use of Transfer Functions. They represent the ratio of Fourier spectrum of amplitude motion at the free surface to the corresponding spectrum of the bedrock motion and they are applied in frequency domain usually by FFT method. However, Fourier spectrum only shows the dominant frequency in each time step and is unable to represent all frequency contents in every time step and this drawback leads to inaccurate results. In this research, this process is optimized by decomposing the input motion into different frequency sub-bands using Wavelet Multi-level Decomposition. Each component is then processed with transfer Function relating to the corresponding component frequency. Taking inverse FFT from all components, the ground motion can be recovered by summing up the results. The nonlinear behavior is approximated using an iterative procedure with nonlinear soil properties. The results of this procedure show better accuracy with respect to field observations than does the Conventional method. The proposed method can also be applied to other engineering disciplines with similar procedure.