• Title/Summary/Keyword: Frequency and intensity of typhoon

Search Result 42, Processing Time 0.027 seconds

Field measurement results of Tsing Ma suspension Bridge during Typhoon Victor

  • Xu, Y.L.;Zhu, L.D.;Wong, K.Y.;Chan, K.W.Y.
    • Structural Engineering and Mechanics
    • /
    • v.10 no.6
    • /
    • pp.545-559
    • /
    • 2000
  • A Wind and Structural Health Monitoring System (WASHMS) has been installed in the Tsing Ma suspension Bridge in Hong Kong with one of the objectives being the verification of analytical processes used in wind-resistant design. On 2 August 1997, Typhoon Victor just crossed over the Bridge and the WASHMS timely recorded both wind and structural response. The measurement data are analysed in this paper to obtain the mean wind speed, mean wind direction, mean wind inclination, turbulence intensity, integral scale, gust factor, wind spectrum, and the acceleration response and natural frequency of the Bridge. It is found that some features of wind structure and bridge response are difficult to be considered in the currently used analytical process for predicting buffeting response of long suspension bridges, for the Bridge is surrounded by a complex topography and the wind direction of Typhoon Victor changes during its crossing. It seems to be necessary to improve the prediction model so that a reasonable comparison can be performed between the measurement and prediction for long suspension bridges in typhoon prone regions.

Characteristic of Typhoon and Changma in 2006 (2006년 태풍 특징과 장마)

  • Cha, Eun-Jeong;Lee, Kyung-Hi;Park, Yun-Ho;Park, Jong-Suk;Shim, Jae-Kwan;In, Hee-Jin;Yoo, Hee-Dong;Choi, Young-Jean
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.327-331
    • /
    • 2007
  • 23 tropical cyclones of tropical storm(TS) intensity or higher formed in the western North Pacific and the South China Sea in 2006. The total number is less than the 30-year $(1971{\sim}2000)$ average frequency of 26.7, Out of 23, 15 cyclones reached typhoon(TY) intensity, three severe tropical storm(STS) intensity, and five TS intensity. The tropical cyclone season in 2006 began in May with the formation of CHANCHU(0601). While convective activity was slightly inactive around the Philippines from late June to early August. In addition, subtropical high was more enhanced than normal over the south of Japan from May to early August. Consequently, most tropical cyclones formed over the sea east of the Philippines after late June, and many of them moved westwards to China. CHANCHU(0601), BILIS(0604), KAEMI(0605), PRAPIROON(0606) and SAOMI(0608) brought damage to China, the Philippines, and Vietnam. On the other hand, EWINIAR(0603) moved northwards and hit the Republic of Korea, causing damage to the country From late August to early September, convective activity was temporarily inactive over the sea east of the Philippines. However, it turned active again after late September. Subtropical high was weak over the south of Japan after late August. Therefore, most tropical cyclones formed over the sea east of the Philippines and moved northwards. WUKONG(0610) and SHANSHAN(0613) hit Japan to bring damage to the country. On the other hand, XANGSANE(0615) and CIMARON(0619) moved westwards in the South China Sea, causing damage to the Philippines, Thailand, and Vietnam. In addition, IOKE(0612) was the first namded cyclone formed in the central North Pacific and moved westwards across longitude 180 degrees east after HUKO(0224).

  • PDF

Characteristics of tropical cyclones over the western North Pacific in 2007 (2007년 태풍 특징)

  • Cha, Eun-Jeong;Park, Yun-Ho;Kwon, H. Joe
    • Atmosphere
    • /
    • v.18 no.3
    • /
    • pp.183-197
    • /
    • 2008
  • The purpose of this study is to summarize tropical cyclone activity in 2007. 24 tropical cyclones of tropical storm (TS) intensity or higher formed in the western North Pacific and the South China Sea in 2007. The total number is less than the thirty-year (1971~2000) average frequency of 26.7. Out of twenty four tropical cyclones, 14 TCs reached typhoon (TY) intensity, while the rest 10 only reached severe tropical storm (STS) and tropical storm (TS) intensity - four STS and six TS storms. The tropical cyclone season in 2007 began in April with the formation of KONG-REY (0701). From April to May, two TCs formed in the western North Pacific in response to enhanced convective activity there. From June to July, convective activity turned inactive over the sea around the Philippines and in the South China Sea, and the subtropical high was weak over the south of Japan. MAN-YI (0704) and USAGI (0705) moved northwestward and hit Japan, bringing serious damage to the country. After August, convective activity became enhanced over the sea east of the Philippines, and the subtropical high turned strong over the sea south of Japan. Many TCs, which formed over the sea east of the Philippines and in the South China Sea, moved westward and hit China and Vietnam. PABUK (0706), WUTIP (0707), SEPAT (0708), WIPHA (0712), LEKIMA (0714) and KROSA (0715) brought serious damage to some countries including China, the Philippines and Vietnam. On the other hand, FITOW (0709) and NARI (0711) moved northward, bringing serious damage to Japan and Korea. After HAIYAN (0716), all four TCs except FAXAI (0720) formed over the sea east of $140^{\circ}E$. Three typhoons among them affected Republic of Korea, MAN-YI (0704), USAGI (0705) and NARI (0711). Particularly, NARI (0711) moved northward and made landfall at Goheng Peninsula ($34.5^{\circ}N$, $127.4^{\circ}E$) in 1815 KST 16 September. Due to $11^{th}$ typhoon NARI, strong wind and record-breaking rainfall amount was observed in Jeju Island. It was reported that the daily precipitation was 420.0 mm at Jeju city, Jeju Island on 16 September the highest daily rainfall since Jeju began keeping records in 1927. This typhoon hit the southern part of the Korean peninsula and Jeju Island. 18 people lost their lives, 14,170 people were evacuated and US$ 1.6 billion property damage was occurred.

Characteristics of Monthly Maximum Wind Speed of Typhoons Affecting the Korean Peninsula - Typhoon RUSA, MAEMI, KOMPASU, and BOLAVEN - (한반도 영향 태풍의 월별 최대풍 특징과 사례 연구 - 태풍 루사·매미·곤파스·볼라벤을 대상으로 -)

  • Na, Hana;Jung, Woo-Sik
    • Journal of Environmental Science International
    • /
    • v.28 no.4
    • /
    • pp.441-454
    • /
    • 2019
  • The present study analyzes the characteristics of 43 typhoons that affected the Korean Peninsula between 2002 and 2015. The analysis was based on 3-second gust measurements, which is the maximum wind speed relevant for typhoon disaster prevention, using a typhoon disaster prevention model. And the distribution and characteristics of the 3-second gusts of four typhoons, RUSA, MAEMI, KOMPASU, and BOLAVEN that caused great damage, were also analyzed. The analysis show that between May and October during which typhoons affected the Korean Peninsula, the month with the highest frequency was August(13 times), followed by July and September with 12 occurrences each. Furthermore, the 3-second gust was strongest at 21.2 m/s in September, followed by 19.6 m/s in August. These results show that the Korean Peninsula was most frequently affected by typhoons in August and September, and the 3-second gusts were also the strongest during these two months. Typhoons MAEMI and KOMPASU showed distribution of strong 3-second gusts in the right area of the typhoon path, whereas typhoons RUSA and BOLAVEN showed strong 3-second gusts over the entire Korean Peninsula. Moreover, 3-second gusts amount of the ratio of 0.7 % in case of RUSA, 0.8 % at MAEMI, 3.3 % at KOMPASU, and 21.8 % at BOLAVEN showed as "very strong", based on the typhoon intensity classification criteria of the Korea Meteorological Administration. Based on the results of this study, a database was built with the frequencies of the monthly typhoons and 3-second gust data for all typhoons that affected the Korean Peninsula, which could be used as the basic data for developing a typhoon disaster prevention system.

A Framework for Quantifying the Damage to Residential Facilities Caused by Typhoon Changes (태풍 변화로 인한 주거시설 피해 정량화 프레임 워크 제안)

  • Kim, Ji-Myong;Son, Seunghyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.6
    • /
    • pp.797-807
    • /
    • 2023
  • This research aims to investigate the alterations in typhoon patterns attributable to climate change and to quantitatively assess the risk of damage to residential structures. The increasing prevalence of climate anomalies and severe weather events, a consequence of global warming, is causing escalating damage globally. Notably, numerous countries are facing substantial devastation due to shifts in typhoon trajectories. Despite this, there exists a gap in empirical research quantifying the impact of these changes on building integrity and the associated risk alterations driven by climate change. In addressing this gap, our study analyzes the frequency and intensity of typhoons impacting Korea, examining the evolution of these meteorological phenomena. Furthermore, we employ the Korean Typhoon Vulnerability Function for residential facilities to quantify the altered risk posed by these changing patterns. The outcomes of this study provide the private sector with essential data to formulate diverse scenarios and business strategies in response to the escalating risks of typhoon-related damage. Additionally, it equips governmental bodies with the necessary insights to develop comprehensive risk management strategies to mitigate the effects of future typhoons.

Analysis on Rainfall and Geographical Characteristics of Landslides in Gyeongnam Province (경남지역 산사태 발생지의 강우 및 지형특성분석)

  • Kim, Ki Heung;Jung, Hea Reyn;Park, Jae Hyeon;Ma, Ho Seop
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.14 no.2
    • /
    • pp.33-45
    • /
    • 2011
  • The purpose of this study to analyze landslide-triggering factors using the 38 landslide cases occurred by typhoon, Rusa in 2002, Maemi in 2003 and Ewiniar in 2006 and geospatial characteristics in Hamyang and Geochang County. where two day's heavy rainfall was concentrated on. The rainfalls factors to trigger landslides were accumulative rainfall (>230mm) and rainfall intensity(>30-75mm). The highest landslide frequency was concentrated on the areas of 400-900m in height and on the slopes of $25-40^{\circ}$ in degree. The frequency of landslide was high exceedingly above 80% of a slope attitude, while the frequency is very low below 70%. Granite was more susceptible as much as 9 times than metamorphic rocks. In areas mixed soil with gravels and rock blocks, the frequency of landslide was 73%.

The Vulnerability of the Reclaimed Seashore Land Attendant Upon Storm Surge/Coastal Inundation (해일/범람에 따른 해안 매립지의 취약성)

  • Kang, Tae-Soon;Moon, Seung-Rok;Nam, Soo-Yong;Shim, Jae-Seol
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.68-75
    • /
    • 2010
  • Recently, the intensity and frequency of typhoons have been on the increase due to unusual weather phenomena and climate change. In particular, on September 13, 2003, typhoon MAEMI (0314) caused heavy damage in the provinces of Busan and Gyongnam, but also provided an opportunity to perform a variety of studies on storm surge. According to investigation reports on the damage resulting from typhoon MAEMI, the areas where coastal inundation occurred were located in reclaimed land under coastal development. In this study, through an image data analysis of historic and present day typhoons affecting Masan, we found that the inundation damage areas corresponded to reclaimed lands. Therefore, using the area around Busan, including the southeastern coast of Korea where typhoons lead to an increased storm surge risk, we performed a storm surge/inundation simulation, and examined the inundation effect on reclaimed land due to the intensified typhoons predicted for the future by climate change scenarios.

Change of TC Activity Around Korea by Arctic Oscillation Phase (북극진동의 위상에 따른 한국 부근에서의 태풍 활동 변화)

  • Choi, Ki-Seon;Kim, Tae-Ryong
    • Atmosphere
    • /
    • v.20 no.4
    • /
    • pp.387-398
    • /
    • 2010
  • This study shows that frequency of tropical cyclone (TC) around Korea in summer (June-September) has positive relation with Arctic Oscillation (AO) in the preceding April. In a positive AO phase, each of anomalous cyclone and anomalous anticyclone is developed in low latitude and middle latitude regions of East Asia from the preceding April to summer. As a result, while anomalous southeasterly around Korea serves as a steering flow that TCs move toward this area is strengthened, northwesterly that reinforced in southeastern area of East Asia plays a role in preventing TCs from moving toward this area. In addition, due to this distribution of pressure systems developed in this AO phase, TCs tend to occur, move and recurve in further northeastern region in the western North Pacific than TCs in a negative AO phase. On the contrary, TCs in a negative AO phase mainly move westward toward southern China or Indochina Peninsula from Philippines. Eventually, intensity of TCs is weaker than those in a positive AO phase due to the terrain effect caused by high passage frequency of TCs in mainland China.

Possible Relationship between NAO and Western North Pacific Typhoon Genesis Frequency (북대서양 진동과 북서태평양 태풍발생빈도와의 관계)

  • Choi, Ki-Seon;Park, Sangwook;Chang, Ki-Ho;Lee, Jong-Ho
    • Journal of the Korean earth science society
    • /
    • v.34 no.3
    • /
    • pp.224-234
    • /
    • 2013
  • This study examined a strong positive correlation between the North Atlantic Oscillation (NAO) index during June and the total tropical cyclone (TC) genesis frequency in the western North Pacific during July and August. To investigate a possible cause for this relationship, the mean difference between the highest positive NAO years and the lowest negative NAO years was analyzed by dividing into when the El Ni$\tilde{n}$o and La Ni$\tilde{n}$a years were included and when the El Ni$\tilde{n}$o and La Ni$\tilde{n}$a years were not included. When the El Ni$\tilde{n}$o and La Ni$\tilde{n}$a years were included, for the positive NAO years, the TCs mostly occurred in the northwestern region of tropical and subtropical western Pacific, and showed a pattern that migrate from the sea northeast of the Philippines, pass the East China Sea, and move toward the mid-latitudes of East Asia. In contrast, for the negative NAO years, the TCs mostly occurred in the southeastern region of tropical and subtropical western Pacific, and showed a pattern that migrate westward from the sea southeast of the Philippines, pass the South China Sea, and move toward the southern coast of China and Indochinese peninsula. These two different TC migration patterns affect the recurving location of TC, and for the positive NAO years, the recurving of TC was averagely found to take place in the further northeast. In addition, the migration patterns also affect the TC intensity, and the TCs of positive NAO years had stronger intensity than the TCs of negative NAO years as sufficient energy can be absorbed from the ocean while moving north in the mid-latitudes of East Asia. The TCs of negative NAO years showed weak intensity as they get weaken or disappear shortly while landing on the southern coast of China and the Indochinese peninsula. On the other hand, the above result of analysis is also similarly observed when the El Ni$\tilde{n}$o and La Ni$\tilde{n}$a years were not included.

The Characteristic of the Disasters caused by Typhoons passing through the Sea Area around the Korean Peninsula (한반도 주변 해역을 통과한 태풍의 재해특성)

  • Ahn, Suk-Hee;Choi, Ki-Seon;Kim, Baek-Jo;Shin, Seung-Sook
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.109-112
    • /
    • 2008
  • The purpose of this study is to find out the characteristics of disasters caused by typhoons passing through the sea area around the Korean Peninsula. It analyzed two cases, that is, in WEST and EAST cases. These include the typhoons passing through the Yellow Sea, west of the Peninsula and East Sea, east of the Peninsula without landing on the Peninsula. FCM (Fuzzy Clustering Method) analysis was performed on typhoons affecting the Korean Peninsula from 1951 to 2006. The analysis shows that WEST case's cluster has the curved track of NE-S, and EAST case's cluster has the straight track of NE-SW. Typhoons that pass through the Yellow Sea have little change in frequency and the weak intensity. On the other hand, the frequency and the intensity of typhoons passing through the East Sea show the increasing trend. The characteristic of disasters by typhoons affecting the Korean Peninsula from 1973 to 2006 appears differently for each case: EAST cases caused significant damage in flooding, while WEST cases did damage in houses, ships, roads, and bridges. Rainfall amount and maximum wind speed data are analyzed in order to understand the impact of the typhoons, and the result indicates that the WEST cases are influenced by the wind, and East cases by precipitation. The result of this study indicates that the characteristic of disasters is distinctive according to the Typhoon's track. If applied to establish the disaster prevention plan, this result could make a contribution to the damage reduction.

  • PDF