• Title/Summary/Keyword: Frequency and Energy

Search Result 4,579, Processing Time 0.038 seconds

A wave model of two identical beams coupled by a plate for a mid-frequency analysis (중주파수 해석을 위한 웨이브 모형 연구: 두개의 보와 판 연성계)

  • Thompson, D.J.;Ferguson, N.S.;Yoo, Ji-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.771-775
    • /
    • 2006
  • There has been much effort to find suitable methods for structural analysis in the mid-frequency region where traditional low frequency methods have increasing uncertainties whilst statistical energy analysis is not strictly applicable. Systems consisting of relatively stiff beams coupled to flexible plates have a particularly broad mid-frequency region where the beams support only a few modes whilst the plate has a high modal density and modal overlap. A system of two parallel beams coupled to a plate is investigated based on the wave method, which is an approximate method. The wave model is extended from a single-beam-plate system, to a plate with two identical beams which is modelled using a symmetric-anti symmetric technique. Experimental results such as powers and energy ratios show the validity of the analytical wave models.

  • PDF

Design and analysis of vibration micro piezoelectric energy harvesting for wireless sensor nodes (무선 센서 노드용 진동형 마이크로 압전 에너지 하베스팅 설계 및 분석)

  • Yoon, Kyu-Hyung;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.277-277
    • /
    • 2009
  • In this paper, PMPG (Piezoelectric Micro Power Generator) was investigated by ANSYS FEA (Finite Element Analysis) to decrease operating frequency and improve out power. The micro power generator was designed to convert ambient vibration energy to electrical power as a ZnO piezoelectric material. To find optimal model in low vibration ambient, the shape of power generator was changed with different membrane width, thickness, length, and proof mass size. Used the ANSYS modal analysis, bending mode and stress distribution of optimal model were analyzed. Also, the displacement with the frequency range was analyzed by harmonic analysis. From the simulation results, the resonance frequency of optimal model is about 373 Hz and confirmed the possibility of ZnO micro power generator for wireless sensor node applications.

  • PDF

Development of Countermeasure for Improving the Power Quality using Coordinated Control of BESS on Electric Vehicle connected System (전기 자동차 계통 연계 시 BESS의 협조제어를 이용한 전력품질 향상 대책 개발)

  • Lee, Soon-Jeong;Kim, Sang-Won;Kim, Jun-Hyeok;Kim, Chul-Hwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.6
    • /
    • pp.63-69
    • /
    • 2015
  • Energy Storage Systems (ESSs) are essential in the future power systems because they can improve power usage efficiency. In this paper, we propose the countermeasure for improving the power quality using coordinated control of BESS(Battery Energy Storage System) on EV connected system. To verify the performance of proposed scheme, we simulate on the actual power system of KEPCO and compare the results of voltage variation, frequency variation, and load factor with those of uncoordinated control. From the simulation results, we confirm that frequency and voltage deviation are significantly reduced with proposed coordinated control of BESS.

Seismic Fragility Analysis of Equipment Considering the Inelastic Energy Absorption Factor of Weld Anchorage for Seismic Characteristics in Korea (국내 지진동 특성에 대한 기기 용접 정착부의 비탄성에너지 흡수계수를 고려한 지진취약도 평가)

  • Eem, Seunghyun;Kim, Gungyu;Choi, In-Kil;Kwag, Shinyoung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.69-75
    • /
    • 2023
  • In Korea, most nuclear power plants were designed based on the design response spectrum of Regulatory Guide 1.60 of the NRC. However, in the case of earthquakes occurring in the country, the characteristics of seismic motions in Korea and the design response spectrum differed. The seismic motion in Korea had a higher spectral acceleration in the high-frequency range compared to the design response spectrum. The seismic capacity may be reduced when evaluating the seismic performance of the equipment with high-frequency earthquakes compared with what is evaluated by the design response spectrum for the equipment with a high natural frequency. Therefore, EPRI proposed the inelastic energy absorption factor for the equipment anchorage. In this study, the seismic performance of welding anchorage was evaluated by considering domestic seismic characteristics and EPRI's inelastic energy absorption factor. In order to reflect the characteristics of domestic earthquakes, the uniform hazard response spectrum (UHRS) of Uljin was used. Moreover, the seismic performance of the equipment was evaluated with a design response spectrum of R.G.1.60 and a uniform hazard response spectrum (UHRS) as seismic inputs. As a result, it was confirmed that the seismic performance of the weld anchorage could be increased when the inelastic energy absorption factor is used. Also, a comparative analysis was performed on the seismic capacity of the anchorage of equipment by the welding and the extended bolt.

EM WAVE PENETRATION INTO A CYLINDRICAL CAVITY WITH A CENTER DIELECTRIC-ROD (중심의 유전체 막대가 있는 원통형공동의 전자파흡수)

  • Cho, Chul;Rhee, Un-Dong
    • 전기의세계
    • /
    • v.28 no.2
    • /
    • pp.68-75
    • /
    • 1979
  • The penetration of an electro-magnetic wave through an aperture in a cylindrical structure with a center dielectric-rod is investgated. By using a standard mode matching procedure, the electrical and magnetic fields in a cavity are determined as a function of position inside the cavity and frequency of the incident field. For the given parameters, computed data are obtained and the results exhibited in form of amplitude curves of the nor malized field and energy densities of functions of position and frequency. Depending on the increase of the relative dielectric constant of center dielectric-rod, the resonance frequecies of the cavity vary as the cavity size decrease. The stored electro-magnetic energy varies very rapidly as a function of position inside the cavity and of the source frequency. Its peak value can be two orders of magnitude greater than the incident energy density. The frequencies where the peaks occur can be identified approximately as the resonance frequencies of the cavity.

  • PDF

Design of QFT controller of superconductor flywheel energy storage system for load frequency control

  • Lee, J.P.;Kim, H.G.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.1
    • /
    • pp.19-24
    • /
    • 2013
  • In this paper, the Superconductor flywheel energy storage system (SFESS) was used for the load frequency control (LFC) of an interconnected 2 area power system. The robust SFESS controller using quantitative feedback theory (QFT) was designed to improve control performance in spite of parameter uncertainty and unexpected disturbances. An overlapping decomposition method was applied to simplify SFESS controller design for the interconnected 2 area power system. The model for simulation of the interconnected 2 area power system included the reheat steam turbine, governor, boiler dynamics and nonlinearity such as governor deadband and generation rate constraint (GRC). To verify robust performance of proposed SFESS controller, dynamic simulation was performed under various disturbances and parameters variation of power system. The results showed that the proposed SFESS controller was more robust than the conventional method.

Experimental Study on Energy Dissipation Capacities of the Viscous Damping Wall (벽식점성감쇠기의 감쇠 성능에 관한 기초적인 연구)

  • 이장석;김남식;조강표
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.246-251
    • /
    • 2003
  • This paper presents an experimental study on the energy dissipation characteristics of viscous damping wall (VDW). VDW is consisted of a plate floating in a thin case made of steel plated filled with highly viscous silicone oil. Because VDW demonstrates both viscous damping and stiffness characteristics, the viscous resisting force can be expressed as the sum of velocity dependant viscous damping force and displacement dependant restoring force. The viscous resisting force and energy absorbing capacity can be easily adjusted by changing three factors, i.e. viscosity of the fluid, gap distance and area of the wall plates. VDW was tested using a series of harmonic (sinusoidal) displacement history having different frequency and amplitude and the force-displacement relationship was recorded. The relationship between dissipated energy with three factors and the influence of exciting frequency on resisting force were Investigated

  • PDF

A transport model for high-frequency vibrational power flows in coupled heterogeneous structures

  • Savin, Eric
    • Interaction and multiscale mechanics
    • /
    • v.1 no.1
    • /
    • pp.53-81
    • /
    • 2008
  • The theory of microlocal analysis of hyperbolic partial differential equations shows that the energy density associated to their high-frequency solutions satisfies transport equations, or radiative transfer equations for randomly heterogeneous materials with correlation lengths comparable to the (small) wavelength. The main limitation to the existing developments is the consideration of boundary or interface conditions for the energy and power flow densities. This paper deals with the high-frequency transport regime in coupled heterogeneous structures. An analytical model for the derivation of high-frequency power flow reflection/transmission coefficients at a beam or a plate junction is proposed. These results may be used in subsequent computations to solve numerically the transport equations for coupled systems, including interface conditions. Applications of this research concern the prediction of the transient response of slender structures impacted by acoustic or mechanical shocks.

A Study on the LCD Backlight Drive using Piezoelectric Transformer (압전 변압기를 이용한 LCD Backlight 구동에 관한 연구)

  • 강태구;이동균;유영한;안형근;한득영
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.273-277
    • /
    • 1999
  • A cold cathode flourescent lamp for the backlight in the notebook computer requires high input voltage about 1300(V) when it turns on. But once a discharge starts, the input voltage can be dropped by about one-third for continued output. The equivalent impedance also varies from open to several dozens of kilo-ohms. The piezoelectric transformer converts electrical energy into mechanical energy and then converts it back to electrical energy at a high voltage. Its high output voltage, high efficiency and small size are suitable for driving the LCD backlight in the notebook computer. The piezoelectric transformer operates near the resonance frequency and the output waveform is close to sine wave with very little noise. This paper suggests an inverter for LCD backlight of notebook computer using piezoelectric transformer that includes voltage to frequency converter for gate signal which is useful for tracking of variable resonance frequency depending on load impedance.

  • PDF

Fabrication of Vibration-Driven Electromagnetic Energy Harvester with Spring-Less and Its Characteristics (스프링이 없는 진동형 전자기식 에너지 하베스터의 제작과 그 특성)

  • Ryu, Kyeong-Il;Chung, Gwiy-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.249-253
    • /
    • 2011
  • This paper describes the fabrication and characteristics of vibration-driven electromagnetic energy harvester without spring to use at low frequency like a human body motion. The implemented energy harvester consists of NdFeB magnets, copper coil. The optimization of induced voltage was done by the various widths of coil, number of the turns, size of fixed and moving magnets and thicknesses of the cylinder. The fabricated energy harvester is capable of producing up to 15.0 $V_{pp}$ for basic model and 28.80 $V_{pp}$ for improved model at 5.0 Hz resonance frequency and 0.75 g acceleration level. The basic model and improved model are provided a maximum power of 6.375 mWand 25.831 mW at 1 KHz of load resistance in rectifier circuit.