• 제목/요약/키워드: Frequency and Energy

검색결과 4,553건 처리시간 0.041초

비침습적 관절질환 진단을 위한 관절음의 시주파수 분석 (Time-frequency Analysis of Vibroarthrographic Signals for Non-invasive Diagnosis of Articular Pathology)

  • 김거식;송철규;서정환
    • 전기학회논문지
    • /
    • 제57권4호
    • /
    • pp.729-734
    • /
    • 2008
  • Vibroarthrographic(VAG) signals, emitted by human knee joints, are non-stationary and multi-component in nature and time-frequency distributions(TFD) provide powerful means to analyze such signals. The objective of this paper is to classify VAG signals, generated during joint movement, into two groups(normal and patient group) using the characteristic parameters extracted by time-frequency transform, and to evaluate the classification accuracy. Noise within TFD was reduced by singular value decomposition and back-propagation neural network(BPNN) was used for classifying VAG signals. The characteristic parameters consist of the energy parameter, energy spread parameter, frequency parameter, frequency spread parameter by Wigner-Ville distribution and the amplitude of frequency distribution, the mean and the median frequency by fast Fourier transform. Totally 1408 segments(normal 1031, patient 377) were used for training and evaluating BPNN. As a result, the average value of the classification accuracy was 92.3(standard deviation ${\pm}0.9$)%. The proposed method was independent of clinical information, and showed good potential for non-invasive diagnosis and monitoring of joint disorders such as osteoarthritis and chondromalacia patella.

Modeling and Experimental Study of Radio-frequency Glow Discharges and Applications for Plasma Processing

  • Kang, Nam-Jun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.179-179
    • /
    • 2012
  • Low pressure radio-frequency glow discharges are investigated using theoretical modeling and various experimental diagnostic methods. In the calculations, global models and transformer models are developed to understand the chemical kinetics as well as the electrical properties such as the effective collision frequency, the heating mechanism and the power transferred to the plasma electrons. In addition, Boltzmann equation solver is used to compensate the effect of the electron energy distribution function (EEDF) shape in the global model, and the general expression of energy balance for non-Maxwellian electrons is developed. In the experiments, a number of traditional plasma diagnostic methods are used to compare with calculated results such as Langmuir probe, optical emission spectroscopy (OES), optical absorption spectroscopy (OAS) and two-photon absorption laser-induced fluorescence (TALIF). These theoretical and experimental methods are applied to understand several interesting phenomena in low pressure ICP discharges. The chemical and physical properties of low pressure ICP discharges are described and the applications of these methods are discussed.

  • PDF

풍력단지의 최대 운동에너지 보유를 위한 예비력 분배 (Reserve distribution to maximize the kinetic energy of a wind power plant)

  • 윤기환;이진식;이혜원;강용철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.179-180
    • /
    • 2015
  • High wind penetration might cause the frequency stability problem because a wind power plant (WPP) is operating in a maximum power tracking mode to extract the maximal energy from wind and thus does not react to the system frequency variation. Therefore, the system operators encourage a WPP to participate in frequency control, which includes inertia/orl and primary control. The frequency support capability of a WPP depends on the amount of kinetic energy (KE) and reserve. This paper formulates an optimization problem to maximize KE while retaining the required reserve. The proposed optimization problem would allow wind generators (WGs) with a smaller wind speed to retaine more KE. The performance of the proposed optimization problem was investigated in a 100-MW WPP consisting of 20 units of 5-MW permanent magnet synchronous generators using an EMTP-RV simulator. The results show that the proposed optimization problem successfully improves the frequency nadir more than a conventional reserve allocation that distributes WGs proportional to the current output.

  • PDF

계통연계형 마이크로그리드의 독립운전시 주파수 제어에 관한 연구 (Frequency Control Method of Grid Interconnected Microgrid Operating in Stand Alone Mode)

  • 채우규;이학주;박중성;조진태;원동준
    • 전기학회논문지
    • /
    • 제61권8호
    • /
    • pp.1099-1106
    • /
    • 2012
  • Microgrid is a new electrical energy system that composed of various generators, renewable energy, batteries and loads located near the electrical customers. When Microgrid is interconnected with large power system, Microgrid don't need to control the frequency. But in case of the outage or faults of power system, Microgrid should control the frequency to prevent the shutdown of Microgrid. This paper presents the frequency control methods using the droop function, being used by synchronous generators and EMS(Energy Management System). Using droop function, two battery systems could share the load based on locally measured signals without any communications between batteries. Also, we suggest that EMS should control the controllable distributed generators as P/Q control modes except batteries to overcome the weakness of droop function. Finally we suggest the two batteries systems to prolong the battery's life time considering the economical view. The validation of proposed methods is tested using PSCAD/EMTDC simulations and field test sites at the same time.

주메모리 접근을 고려한 CPU 주파수 조정 제한 (Limiting CPU Frequency Scaling Considering Main Memory Accesses)

  • 박문주
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제20권9호
    • /
    • pp.483-491
    • /
    • 2014
  • 현대의 컴퓨터 시스템에서는 동적 전압/주파수 조정(DVFS: Dynamic Voltage/Frequency Scaling) 기법을 이용하여 성능과 전력 소모의 균형을 이루도록 한다. DVFS 정책의 유용성은 높아진 주파수에 따른 소모 전력에 대한 성능 향상 정도에 달려있다. 특히 메모리 I/O가 많은 응용의 경우 CPU 주파수 상승에 비례하여 성능이 향상되지 않는 경우가 많다. 본 논문에서는 메모리 접근 빈도에 기반하여 CPU 주파수 조정의 상한을 결정하도록 하였다. 명령어 당 메모리 접근(최종 수준 캐시 미스) 빈도에 따라 CPU 주파수 상향으로 인한 성능 향상이 제한되는 것을 실험으로 확인하고, 성능 향상의 이득이 작아지는 CPU 주파수를 제시하도록 한다. 본 논문의 기법을 적용한 실험 결과는 메모리 접근 빈도가 높은 응용에 대하여 30% 이상의 에너지 효율 상승이 있음을 보인다.

동일 평면상에서 연성된 Mindlin 판 구조물의 에너지흐름유한요소해석 (Energy Flow Finite Element Analysis(EFFEA) of Coplanar Coupled Mindlin Plates)

  • 박영호
    • 대한조선학회논문집
    • /
    • 제53권4호
    • /
    • pp.307-314
    • /
    • 2016
  • Energy flow analysis(EFA) is a representative method that can predict the statistical energetics of structures at high frequencies. Generally, as the frequency increases, the shear distortion and rotatory inertia effects in the out-of-plane motion of beams or plates become important. Therefore, to predict the out-of-plane energetics of coupled structures in the high frequency range, the energy flow analyses of Timoshenko beam and Mindlin plate are required. Unlike the energy flow model of Kirchhoff plate, the energy flow model of Mindlin plate is composed of three kinds of energy governing equations(out-of-plane shear wave, bending dominant flexural wave, and shear dominant flexural wave). This paper performed the energy flow finite element analysis(EFFEA) of coplanar coupled Mindlin plates. For EFFEA of coplanar coupled Mindlin plates, the energy flow finite element formulation of out-of-plane energetics in the Mindlin plate was performed. The general EFFEA program was implemented by MATLAB® language. For the verification of EFFEA of Mindlin plate, the various numerical applications were done successfully.

내화금속 다이오드에서 전자기에너지 발전에 관한 연구 (Generation of Electromagnetic Energy in a Refractory Metal Thermionic Diode)

  • Lee, Deuk-Yong
    • 대한전기학회논문지
    • /
    • 제41권7호
    • /
    • pp.823-828
    • /
    • 1992
  • A thermionic energy converter test station is constructed for the study of electromagnetic energy generation. Of particular interest is the frequency variations due to changes in the interelectrode gap, the electrode temperature, and the cesium vapor pressure. It is found experimentally that the most intense ratio-frequency(rf) oscillations occur at two non-overlapping regions.

  • PDF

A Novel Anti-Islanding Method for Utility Interconnection of Distributed Power Generation Systems

  • In-Ho
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제4B권4호
    • /
    • pp.217-224
    • /
    • 2004
  • A novel anti-islanding method for the distributed power generation system (DPGS) is proposed in this paper. Three different islanding scenarios are explored and presented based on the analysis of real and reactive power mismatch. It is shown via investigation that islanding voltage is a function of real power alone, where its frequency is a function of both real and reactive power. Following this analysis, a robust anti-islanding algorithm is developed. The proposed algorithm continuously perturbs ($\pm$5%) the reactive power supplied by the DPGS while simultaneously monitoring the utility voltage and frequency. In the event of islanding, a measurable frequency deviation takes place, upon which the real power of the DPGS is further reduced to 80%. A drop in voltage positively confirms islanding and the DPGS is then safely disconnected. This method of control is shown to be robust: it is able to detect islanding under resonant loads and is also fast acting (operable in one cycle). Possible islanding conditions are simulated and verified through analysis. Experimental results on a 0.5kW fuel cell system connected to a utility grid are discussed.

Design method for the 2DOF electromagnetic vibrational energy harvester

  • Park, Shi-Baek;Jang, Seon-Jun
    • Smart Structures and Systems
    • /
    • 제25권4호
    • /
    • pp.393-399
    • /
    • 2020
  • In this paper, the design method and experimental validation for the two-degree-of-freedom (2DOF) electromagnetic energy harvester are presented. The harvester consists of the rigid body suspended by four tension springs and electromagnetic transducers. Once the two resonant frequencies and the mass properties are specified, both the constant and the positions for the springs can be determined in the closed form. The designed harvester can locate two resonant peaks close to each other and forms the extended frequency bandwidth for power harvesting. Halbach magnet array is also introduced to enhance the output power. In the experiment, two resonant frequencies are measured at 34.9 and 37.6 Hz and the frequency bandwidth improves to 5 Hz at the voltage level of 207.9 mV. The normalized peak power of 4.587 mW/G2 is obtained at the optimal load resistor of 367 Ω.

중고주파에서의 새로운 진동해석시스템, PFFEM 개발연구 (Development of PFFEM, the new vibroacoustic analysis system in medium-to-high frequency ranges)

  • 서성훈;홍석윤;박도현;길현권
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.325-333
    • /
    • 2000
  • To predict vibrational energy density and intensity of partitioned complex system structures in medium-to-high frequency ranges, Power Flow Finite Element Method(PFFEM) programs for the plate elements are developed. The flexural, longitudinal and shear waves in plates are formulated and the joint element equations for multi-couped plates are fully developed. Also the wave transmission approach has been introduced to cover the energy transmission and reflection at the joint plate elements. Using the developed PFFEM program the energy density and intensity of the submarine and automobile shape structures are predicted with a harmonic point force at a single frequency.

  • PDF