• Title/Summary/Keyword: Frequency analyzer

Search Result 617, Processing Time 0.023 seconds

Status Change Monitoring of Semiconductor Plasma Process Equipment (주파수 도메인 반사파 측정법을 이용한 플라즈마 공정장비 상태변화 연구)

  • Yunsang Lee;Sang Jeen Hong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.1
    • /
    • pp.52-55
    • /
    • 2024
  • In this paper, a state change study was conducted through Frequency Domain Reflectometry (FDR) technology for the process chamber of plasma equipment for semiconductor manufacturing. In the experiment, by direct connecting the network analyzer to the RF matcher input of the 300 mm plasma enhanced chemical vapor deposition (PECVD) chamber, S11 was measured in a situation where plasma was not applied, and the frequency domain reacting to the chamber state change was searched. Response factors to changes in the status, such as temperature, spacing of the heating chuck, internal pressure difference, and process gas supply state were confirmed. Through this, the frequency domain in which a change in the reflection value was detected through repeated experiments. The reliability of the measured micro-displacement was verified through reproducibility experiments.

  • PDF

Long-Term Performance Prediction of Carbon Fiber Reinforced Composites Using Dynamic Mechanical Analyzer (동적기계분석장치를 이용한 탄소섬유/에폭시 복합재의 장기 성능 예측)

  • Cha, Jae Ho;Yoon, Sung Ho
    • Composites Research
    • /
    • v.32 no.1
    • /
    • pp.78-84
    • /
    • 2019
  • This study focused on the prediction of the long-term performance of carbon fiber/epoxy composites using Dynamic Mechanical Analysis (DMA) and Time-Temperature Superposition (TTS). Single-frequency test, multi-frequency test, and creep TTS test were performed. A sinusoidal load of $20{\mu}m$ amplitude was applied while increasing the temperature from $-30^{\circ}C$ to $240^{\circ}C$ at $2^{\circ}C/min$ for the single-frequency test and the multi-frequency test. The frequencies applied to the multi-frequency test were 0.316, 1, 3.16, 10 and 31.6 Hz. In the creep TTS test, a stress of 15 MPa was applied for 10 minutes at every $10^{\circ}C$ from $-30^{\circ}C$ to $230^{\circ}C$. The glass transition temperature was determined by single-frequency test. The activation energy and the storage modulus curve for each temperature were obtained from glass transition temperature for each frequency by the multi-frequency test. The master curve for the reference temperature was obtained by applying the shift factor using the Arrhenius equation. Also, TTS test was used to obtain the creep compliance curves for each temperature and the master curve for the reference temperature by applying the shift factors using the manual shift technique. The master curve obtained through this process can be applied to predict the long-term performance of carbon fiber/epoxy composites for a given environmental condition.

High frequency measurement and characterization of ACF flip chip interconnects

  • 권운성;임명진;백경욱
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2001.11a
    • /
    • pp.146-150
    • /
    • 2001
  • Microwave model and high-frequency measurement of the ACF flip-chip interconnection was investigated using a microwave network analysis. S-parameters of on-chip and substrate were separately measured in the frequency range of 200 MHz to 20 GHz using a microwave network analyzer HP8510 and cascade probe. And the cascade transmission matrix conversion was performed. The same measurements and conversion techniques were conducted on the assembled test chip and substrate at the same frequency range. Then impedance values in ACF flip-chip interconnection were extracted from cascade transmission matrix. ACF flip chip interconnection has only below 0.1nH, and very stable up to 13 GHz. Over the 13 GHz, there was significant loss because of epoxy capacitance of ACF. However, the addition of SiO$_2$filler to the ACF lowered the dielectric constant of the ACF materials resulting in an increase of resonance frequency up to 15 GHz. High frequency behavior of metal Au stud bumps was investigated. The resonance frequency of the metal stud bump interconnects is higher than that of ACF flip-chip interconnects and is not observed at the microwave frequency band. The extracted model parameters of adhesive flip chip interconnects were analyzed with the considerations of the characteristics of material and the design guideline of ACA flip chip for high frequency applications was provided.

  • PDF

Development of Linux based Real-Time Spectrum Analyzer for Puretone Audiometer (순음청력검사기를 위한 리눅스 기반 실시간 스펙트럼 분석기 개발)

  • Kang, Deok-Hun;Shin, Bum-Joo;Jeon, Gye-Rok;Wang, Soo-Geun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.6
    • /
    • pp.2830-2839
    • /
    • 2011
  • Because the puretone audiometer is an important medical instrument used to diagnose hearing loss, the IEC and ANSI has been published a specification with which audiometer should comply. This paper describes development of Linux based real-time spectrum analyzer which is dedicated to puretone audiometer. It can measure not only hearing level but also compliance of IEC standard for puretone audiometer such as frequency accuracy, harmonic distortion, pulsed tone, narrow band noise and linearity. We have verified our real-time spectrum analyzer through comparing to commercial product.

Contrast Sensitivity as a function of spatial frequency by using polarization (편광을 이용한 눈의 공간주파수-대비민감도 함수 측정기구 설계)

  • Kim, Young-Geun
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.5 no.1
    • /
    • pp.43-48
    • /
    • 2000
  • It was to adjust the luminance of light by the rotation angle of the polarizes and analyzer. The luminance value Lmax, Lmin of Contrast Sensitivity could be obtained from the rotation angle ${\theta}_m$ of the average luminance($L_m$), the rotation angle(${\theta}_{max}$, ${\theta}_{min}$) of the maximum and the minimum's amplitude. $$L_{max}=I(0)e^{-2at}{\cdot}cos^2{\theta}_m(1+C_s^{-1})$$ $$L_{min}=I(0)e^{-2at}{\cdot}cos^2{\theta}_m(1-C_s^{-1})$$ We obtained the rotation angle(${\theta}_{max}$, ${\theta}_{min}$) of the polarizes and analyzer from the rotation angle ${\theta}_m$ of the average luminance($L_m$) and the Contrast Sensitivity($C_s$). $${\theta}_{max}=cos^{-1}[cos{\theta}_m{\cdot}(1+C_s^{-1})^{1/2}]$$ $${\theta}_{min}=cos^{-1}[cos{\theta}_m{\cdot}(1-C_s^{-1})^{1/2}]$$.

  • PDF

12.5-GHz interleaved bidirectional ultra-dense WDM transmission using the beat-frequency-locking method (Beat-frequency-locking기술을 이용한 12.5 GHz 채널간격 양방향 초고밀도 WDM 광채널 전송)

  • 이재승;김상엽;서경희
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.4
    • /
    • pp.351-354
    • /
    • 2003
  • We present a 12.5-GHz interleaved bidirectional ultra-dense wavelength-division-multiplexing transmission over a conventional single mode fiber of 80 km achieving spectral efficiency as high as 0.8-bit/s/Hz. The beat-frequency-locking method is used to stabilize the channel frequency within $\pm$200 MHz error. To facilitate the identification of multiple beat frequency signals, we use a radio-frequency spectrum analyzer. The bidirectional transmission penalty is about 0.3 dB compared with the unidirectional transmission over the same fiber.

Single Phase Inverter High Frequency Circuit Modeling and Verification for Differential Mode Noise Analysis (차동 노이즈 분석을 위한 단상 인버터 고주파 회로 모델링 및 검증)

  • Shin, Ju-Hyun;Seng, Chhaya;Kim, Woo-Jung;Cha, Hanju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.3
    • /
    • pp.176-182
    • /
    • 2021
  • This research proposes a high-frequency circuit that can accurately predict the differential mode noise of single-phase inverters at the circuit design stage. Proposed single-phase inverter high frequency circuit in the work is a form in which harmonic impedance components are added to the basic single-phase inverter circuit configuration. For accurate noise prediction, parasitic components present in each part of the differential noise path were extracted. Impedance was extracted using a network analyzer and Q3D in the measurement range of 150 kHz to 30 MHz. A high-frequency circuit model was completed by applying the measured values. Simulations and experiments were conducted to confirm the validity of the high-frequency circuit. As a result, we were able to predict the resonance point of the differential mode voltage extracted as an experimental value with a high-frequency circuit model within an approximately 10% error. Through this outcome, we could verify that differential mode noise can be accurately predicted using the proposed model of the high-frequency circuit without a separate test bench for noise measurement.

A Straightforward Estimation Approach for Determining Parasitic Capacitance of Inductors during High Frequency Operation

  • Kanzi, Khalil;Nafissi, Hanidreza R.;Kanzi, Majid
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.3
    • /
    • pp.339-353
    • /
    • 2014
  • A straightforward method for optimal determining of a high frequency inductor's parasitic capacitance is presented. The proposed estimation method is based on measuring the inductor's impedance samples over a limited frequency range bordering on the resonance point considering k-dB deviation from the maximum impedance. An optimized solution to k could be obtained by minimizing the root mean squared error between the measured and the estimated impedance values. The model used to provide the estimations is a parallel RLC circuit valid at resonance frequency which will be transferred to the real model considering the mentioned interval of frequencies. A straightforward algorithm is suggested and programmed using MATLAB which does not require a wide knowledge of design parameters and could be implemented using a spectrum analyzer. The inputs are the measured impedance samples as a function of frequency along with the diameter of the conductors. The suggested algorithm practically provides the estimated parameters of a real inductance model at different frequencies, with or without design information. The suggested work is different from designing a high frequency inductor; it is rather concentration of determining the parameters of an available real inductor that could be easily done by a recipe provided to a technician.

Measurement of the Propagation Constant of a Power Cable Using a Two-Port Time-Domain Reflectometry Technique (Two-Port Time Domain Reflectometry 방법을 이용한 XLPE 전력용 케이블의 전파 특성 측정)

  • Shin, Dong Sik;Cho, Hyeon Dong;Park, Wee Sang;Yi, Sang-Hwa;Sun, Jong-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.3
    • /
    • pp.310-315
    • /
    • 2013
  • This paper presents a two-port time-domain reflectometry(TDR) measurement technique for extracting the complex propagation constant of a cross-linked polyethylene(XLPE) cable. For the extraction, a short pulse transmitted through the cable is measured in the time domain and analyzed in the frequency domain. The propagation constant of a 22.9 kV XLPE cable with a conductor area of 325 $mm^2$ is extracted up to a frequency of approximately 2.14 GHz. The $S_{21}$ measured using a network analyzer and the two-port TDR technique are compared for verification. As a result compared with previous TDR method, the upper possible frequency limit for extracting the propagation constant increases and the measurement error decreases.

The Acoustical Characteristics of the Hae-keum (奚琴의 音響學的 特性)

  • Lim, Moo-Yeol;Yoon, Wha-Joong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.9 no.3
    • /
    • pp.11-23
    • /
    • 1990
  • In order to investigate the acoustical characteristics of the Hae-keum (Korean traditional musical instrument) tone quality, the spectrum and wave form of Hae-keum sounds were analyzed by the FFT Analyzer. The analysis was carried out by the varying of the tension of Hae-keum strings, the positions of bridge and the top plate's thickness of Hae-keum respectively. According to the experiment, the following results are obtained ; the over tone's amplitude nearby the top plate resonance frequency is greater than the fundamental tone's amplitude because the top plate resonance frequency is higher than the fundamental tone's frequency. Tone qualities are better when the bridge is situated in the middle of top plate and the tension of strings is larger. The inharmonicity coefficient of the Hae-keum's second string is 0.049 cents/$n^2$. The brilliance and richness is poor, because we seldom found the over tone over 5kHz and the inharmonicity of the Hae-keum is greater than that of a violin. Also we confirmed that we are able to get the best tone quality in 4.5mm thickness of the Hae-keum's top plate.

  • PDF