• Title/Summary/Keyword: Frequency Weighting function

Search Result 100, Processing Time 0.025 seconds

Optimal Design of a 2-D Quadrature Polar Separable Filter (2차원 Quadrature Polar Separable 필터의 최적 설계)

  • 박종안;박승진
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.16 no.5
    • /
    • pp.434-444
    • /
    • 1991
  • An improved 2-D quadrature polar separable (QPS) filter and its applications to texture processing are discussed in thie paper. The frequency response of the filter consists of two independent parts. The first is a radial weighting function based on the prolate spheridal sequence(PSS). The second is the same orientational function of the angle as in the Knutsson filter. The new filter is suboptimal in the energy loss because we let the polar angle function approximate the radial weighting function as in the 2-D Cartesian filter composed of two PSS's. It is easy to control as it depends only upon the design specification of the bandwidth, the drectional agnle, and the central freqneucy. Also the filter is circularly more symmetric in the frequency domain than the Knutsson filter. In order to estimate the orientation and the frequency component of loca textures in the frequency domain, some applications of the new filter, such as the generation of synthetic textures, the estimation of texture orientations, and texture segementations, are discussed.

  • PDF

MULTI-OBJECTIVE OPTIMIZATION OF THE INNER REINFORCEMENT FOR A VEHICLE'S HOOD CONSIDERING STATIC STIFFNESS AND NATURAL FREQUENCY

  • Choi, S.H.;Kim, S.R.;Park, J.Y.;Han, S.Y.
    • International Journal of Automotive Technology
    • /
    • v.8 no.3
    • /
    • pp.337-342
    • /
    • 2007
  • A multi-objective optimization technique was implemented to obtain optimal topologies of the inner reinforcement for a vehicle's hood simultaneously considering the static stiffness of bending and torsion and natural frequency. In addition, a smoothing scheme was used to suppress the checkerboard patterns in the ESO method. Two models with different curvature were chosen in order to investigate the effect of curvature on the static stiffness and natural frequency of the inner reinforcement. A scale factor was employed to properly reflect the effect of each objective function. From several combinations of weighting factors, a Pareto-optimal topology solution was obtained. As the weighting factor for the elastic strain efficiency went from 1 to 0, the optimal topologies transmitted from the optimal topology of a static stiffness problem to that of a natural frequency problem. It was also found that the higher curvature model had a larger static stiffness and natural frequency than the lower curvature model. From the results, it is concluded that the ESO method with a smoothing scheme was effectively applied to topology optimization of the inner reinforcement of a vehicle's hood.

Coprime factor reduction of plant in $H{\infty}$ mixed sensitivity problem

  • Um, Tae-Ho;Oh, Do-Chang;Park, Hong-Bea;Kim, Soo-Joong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.340-343
    • /
    • 1995
  • In this paper, we get a reduced order controller in $H^{\infty}$ mixed sensitivity problem with weighting functions. For this purpose, we define frequency weighted coprime factor of plant in $H^{\infty}$ mixed sensitivity problem and reduce the coprime factor using the frequency weighted balanced truncation technique. The we design the controller for plant with reduced order coprime factor using J-lossless coprime factorization technique. Using this approach, we can derive the robust stability condition and achieve good performance preservation in the closed loop system with reduced order controller. And it behaves well in both stable plant and unstable plant.t.

  • PDF

SAR IMAGE ENHANCEMENT BASED ON THE PHASE EXTENSION DECONVOLUTION METHOD (위상 확장 디콘볼루션 방식을 이용한 SAR 영상 향상)

  • Do, Dae-Won;Song, Woo-Jin;Kwon, Jun-Chan
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.389-392
    • /
    • 2000
  • In this paper, we propose a novel post processing method of deconvolution for SAR images based on phase extension inverse filtering, which improves spatial resolution as well as effectively eliminates sidelobes with low computational complexity. It extends the bandwidth only to control the magnitude of the processed SAR data without distortions of the phase in frequency domain unlike the other techniques such as spatially variant apodization (SVA), and other deconvolution techniques. We compare the image processed by the proposed method with images processed by uniform weighting function, Hamming weighting function whose coefficient is 0.75, and SVA.

  • PDF

An Optimal 2D Quadrature Polar Separable Filter for Texture Analysis (조직분석을 위한 최적 2차원 Quadrature Polar Separable 필터)

  • 이상신;문용선;박종안
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.3
    • /
    • pp.288-296
    • /
    • 1992
  • This paper describes an improved 2D QPS(quadrature polar separable) filter design and its applications to texture processing. The filter kernel pair consists of the product of a radial weighting function based on the finite PSS (prolate spheroidal sequences) and an exponential at tenuation function for the orientational angle. It is quadrature and polar separable in the frequency domain. It is near optimal in the energy loss because we let the orientational angle function approximate the radial weighting function. The filter frequency characteristics is easy to control as it depends only upon the design specifications such as the bandwidth, the directional angle, the attenuation constant, and the shift constant of the central frequency. Some applications of the filter in texture processing, such as the generation of the texture image, the estimation of orientation angles, and the segmentations for the synthetic texture image, are considered. The result shows that the filter with the wide bandwidth can be used for the generation of discrimination of the strong orientational textures and the segmentation results are good.

  • PDF

The Nonlinear Simulation on the Selection of Suitable Suspension Considering Human Vibration (인체 진동을 고려한 최적 현가장치의 선정에 관한 비선형 모의실험)

  • 김진기;홍동표;최만용
    • Journal of KSNVE
    • /
    • v.10 no.2
    • /
    • pp.247-253
    • /
    • 2000
  • The evaluation of the ride quality had been performed by the subjective method before ISO2631(International Organization for Stadard 2631) and BS6841(British Standard 6841) was precented, but many research programs have been performed by the objective method after that. On this study, the ride quality was evaluated related with the objective method which considered the vibration which the human body feels on the driver's seat while driving on the road. In particular, we made the shock absorber nonlinear model and also selected the suitable shock absorber in the part of the vibration which the human body feels into the simulation. The shock absorber of suspension was dealt with 3 cases respectively with the front wheel and rear wheel. The vibration of the car driving on the road can be transferred to the wheel, the suspension, the vehicle body, the seat and the human body. The signal which was gained from the seat(hip) and the floor(foot) of the human body was changed to the vibration signal which the human body felt through using the frequency weighting function. And then the performance of the shock absorber was calculated through the statistic processing.

  • PDF

Analysis of the Frequency Weighting Curve for the Evaluation of Ride Comfort (승차감 평가를 위한 주파수 보정곡선의 분석)

  • Kim, Y.G.;Park, C.K.;Kim, S.W.;Kim, K.H.;Paik, J.S.
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.6
    • /
    • pp.552-558
    • /
    • 2010
  • Ride comfort of railway vehicles is affected by many factors, such as vibration, noise, smell, temperature, visual stimuli, humidity and a seat design. In general, vibration, which originates from vehicle motion, is considered as the primary concern. In evaluating the ride comfort, relationship between passenger's feeling and vibration characteristics is very important because human feeling is dependent on frequency spectrum of vibration. Therefore, the weighing functions in frequency domain are used to evaluate the ride comfort of railway vehicles. In the present paper, we have analyzed the characteristics of the frequency weighting curves defined in many standards and reviewed the effect resulting from their difference on the ride comfort.

Analysis of the Ability of Recognize Objects for Smart Sensor According to Frequency Changing ( I ) (주파수 변화에 따른 HH 스마트센서의 센싱능력 평가(I))

  • 황성연;홍동표;박준홍
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.922-926
    • /
    • 2001
  • This paper deals with sensing ability of smart sensor that has a sensing ability to distinguish materials according to frequency changing. We have developed a new signal processing method that can distinguish among different materials. The smart sensor was developed for recognition of materials. We estimated the sensing ability of smart sensor with the $R_{SAI}$ method according to frequency changing. Experiments and analysis were executed to estimate the ability to recognize objects according to frequency changing. Sensing ability of smart sensors was evaluated relatively through a new $R_{SAI}$ method. Applications of smart sensors are for finding abnormal conditions of objects (auto-manufacturing), feeling of objects (medical product), robotics, safety diagnosis of structure, etc.etc.

  • PDF

Numerical Calculation of Longitudinal Current Distribution in Grounding Electrode for Analyzing the Grounding Impedance (접지임피던스 분석을 위한 접지전극의 전류분포 수치계산)

  • Cho, Sung-Chul;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.1
    • /
    • pp.46-52
    • /
    • 2013
  • The current distribution passing through grounding electrode is required for calculating an impedance of grounding electrode using the electromagnetic field model. In this paper the numerical calculation for currents passing through a grounding electrode as a function of frequency was given. The proposed approach is based on the wire antenna model(AM) in the frequency domain. The Pocklington's equation driven from the wire antenna theory was numerically calculated by the Galerkin's method. The triangle function was applied to both the basis function and the weighting function. The current distribution of a horizontal ground electrode was simulated in MATLAB. Also these results were compared with the data obtained from the CDEGS HIFREQ calculation.

A Study on the Evaluation of Sensation Magnitude of Vertical Vibration of a Steering Wheel (조향 휠 수직 진동의 체감량 평가에 관한 연구)

  • Jang, Han-Kee;Hong, Seok-In
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.6
    • /
    • pp.108-113
    • /
    • 2007
  • This study aims to find equivalent comfort contours, reciprocal of frequency weighting curves, for vertical steering wheel vibration. Psychophysical responses were measured from twelve male subjects by using magnitude estimation of relative discomfort due to vertical steering wheel vibrations of magnitude of 0.1 to 1.58 $m/s^2$ in the frequency range of 4 to 250 Hz. Relative discomfort were estimated with a reference vibration of 0.4 $m/s^2$ at 31.5 Hz. Equivalent comfort contours were produced from the median of sensation magnitudes judged by twelve subjects, which showed variation in the shapes with increase of vibration magnitude. A shape of the contour came close to the perception threshold curve with decrease of vibration magnitude. When the vibration magnitude increases, the shape changed close to those in the references of Hong and et al (2003). It is also recommended frequency weighting curves for vertical steering wheel vibration must be expressed as a function of vibration magnitude as well as frequency.