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Abstract

In this paper, we get a reduced order controller in H~ mixed sensitivity problem with weighting

functions. For this purpose, we define frequency weighted coprime factor of plant in H~ mixed sensitivity
problem and reduce the coprime factor using the frequency weighted balanced truncation technique. Then we
design the controller for plant with reduced order coprime factor using J-lossless coprime factorization technique.
Using this approach, we can derive the robust stability condition and achieve good performance preservation in
the closed loop system with reduced order controller. And it behaves well in both stable plant and unstable plant.
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1. Introduction

Mathematical models of physical systems often have very
high order system transfer functions. Because of
computational and other practical limitations, the high order
model should be reduced for synthesis, analysis, and
implementation. The approximation problem of a high order
model by a lower order one has attracted much attention in
the past two decades and many techniques have been
proposedm.

Indeed, using model reduction is a technique for designing
a reduced order controller. In addition to guarantee the closed
loop stability, the reduced order model must characterize the
physical system as closely as possible such that performance
objectives for the controlled physical system can be met with
reduced order model.

A method using the concept of balanced realization has
been proposed by Moore™ for the reduction of linear
continuous system. Based on different truncation criteria, a
number of model reduction methods® using balanced
realizations are available. Another popular methods are Hankel
approximationm and g-COVER method®. Hankel
approximation method has a closed form error criterion for
the optimal reduced order model. And model reduction method
using coprime factorization technique has also been developed.
It has a good property that it can directly reduce the unstable
model. On the other hand, the balanced realization method
was extended to include the frequency dependent weighting
functions. The weighting functions are used to meet the
design specificationsm.

Though the H~ mixed sensitivity minimization has various
structures, we consider a frequency weighted H™ mixed
sensitivity problem which was treated by Tsai et al®. The
problem can be thought as disturbance rejection and
stabilization in the face of unstructured perturbations. It is
known that A~ mixed sensitivity problem can have pole-zero
cancellations and be used in partial pole placement in the
closed loop system.

In here, we obtain the reduced order controller in H"
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mixed sensitivity problem using coprime factor reduction of
plant and J-lossless coprime factorization design method"®,
The robust stabilization condition of the closed loop system
with reduced order controller is found. This approach can be
directly used in the unstable plant as well as stable plant and
achieve partial pole placement in the closed loop system using
weighting functions. And it also preserves good performances
of closed loop system with full order plant and controller.

2. H” mixed sensitivity problem

Consider the linear, time-invariant feedback system in
Fig.l. For notational convenience, the Laplace variable s will
be dropped. G is the nominal plant and K is the controller;
Wi, W2, and Wy are weighting functions. And va, e1, and ez
are the external disturbance, output from disturbance
considering sensitivity function, and output from disturbance
through controller in the feedback system,respectively

€

Fig. 1. Block diagram for H~ mixed sensitivity problem.

The transfer function from vs to e1 and e: is given by

e[ WU-GR 'Wa], _ 7,
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Then the H~ mixed sensitivity problem is defined to be
given by

min i 71 (2)
stabilizing X



where W1, W2, and Wy are chosen to meet the given design
specificationsm.

The above H” mixed sensitivity problem is formulated to
achieve good disturbance rejection and to maintain stability in
the face of unstructured additive perturbations. These
purposes cannot be done simultaneously over all frequencies,
but the weighting functions W) and W32 can be used to
emphasize one or other objective over significant frequency
ranges.

Typically W1 is chosen as a high gain, low pass filter in
order to reject output disturbances in the low frequency
range. Otherwise W2 is chosen as a high pass filter to
maintain stability in the face of high frequency additive
perturbations. The weighting function Wa can be regarded as
a generator which characterizes all relevant disturbances. Wa
is also used as designer freedom for partial pole placement
and stopband shaping.

Generally, H~ mixed sensitivity have
pole-zero cancellation in the closed-loop transfer functions.
And it is noted that H~ mixed sensitivity problem can be
transformed to robust stabilization problem for coprime factor
uncertainties. We  will consider the coprime factor
uncertainties which are used as errors of model reduction.

Throughout this paper, weighting functions are assumed to
have the following conditions

i) Wi, e RH”, W, ', W' RH”

ii) Wy 'le RH™,

problem can

3. Coprime factor reduction

3.1 Frequency weighted model reduction

There are two approaches for designing reduced order
controllers; one 1s to simplify the high order plant and design
the controller for it, the other is to get the full order
controller for the high order plant and then reduce the
controller, Both have some advantages and disadvantages,
respectively. In designing reduced order controller, closed loop
stability should be guaranteed by any methods and original
performance must be preserved as closely as possible. Here
we will get the reduced order controller using the plant order
reduction method.

With the plant order reduction, the error due to the
reduced order model is associated with the perturbation of the

stability robustness theorem[” like shown in Fig. 2.

Fig. 2. Block diagram for mode] reduction
of nominal plant G.
The closed loop stability of the nominal plant G with

reduced order controller K is guaranteed by
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E= | [G-GIKI-G,K)"| .<1. 6

Unfortunately, the weighting functions for reducing the order
of nominal plant G are not known a priori. The weighting
functions depend on both the reduced order model and the
reduced order controller which are not known before the
model reduction.

Enn® proposed the frequency weighted balanced truncation
model reduction method and recently many researchers are
trying to find simple error bound.

3.2 Frequency weighted coprime factor reduction

H” mixed sensitivity problem in Fig. 1 can be changed to
the robust control problem with coprime factor uncertainties
in Fig. 3. We assume that the poles of Wg are those of plant,
then there is no addition in controller order by Wa Using
special Wa, we can get some advantages, that is, it is able to
reduce unstable plant, to consider the controller design
method using normalized coprime factorization and to replace
the given fixed poles in mixed sensitivity problem with
desired poles.

4 2

Fig. 3. Closed loop system with coprime factor uncertainties.

Let the condition for coprime factor uncertainties be

“ [dy 4u] 251 0]

Wt { Emax. (4

o

Then the necessary and sufficient condition for robust

stability in the face of [4dy 4yl is given by

i) (G, K, W,,W,, W,) is intemally stable

Emax

W | WU =GR W,
WK1~ GK) ™' Wy

o

where &g 1S a maximum stability margin.

=]

Fig. 4. Block diagram for coprime factor reduction.

In this structure, H~ mixed sensitivity problem is
equivalent to robust stabilization problem with coprime factor
uncertainties. And robustness problem of Fig. 3 can be



transformed to coprime factor reduction problem of Fig. 4.
Where  the [N M] is defined by
(Wz'G W'l

coprime factor

Let the frequency weighted coprime factor mode! be
(AW W', ®)
[N, 8,] of [N M] is

obtained by frequency weighted balanced truncation of eqn.
(5).

then the reduced coprime factor

Theorem 1
The closed loop stability of [N M] with K, will be
guaranteed if

| [(N-N)W' (M- M)W ']
6}

VVZKr(I_GrKr)‘IM:I (1
—14y-1
VVI(I - GrK r) M 14 '
is satisfied.
(proof) 1t is directly obtained by small gain theorem. B

Like the egn. (3), the weighting functions for reducing the

order of [N M] are not known a priori. Assume that
a= | [(N-N)W' (M-M)w'1]., Q)

“ WK (I —GK) ‘M

< € o
W(I—GK) M} ¢ ®

are given, then € ,m,> &; is a sufficient condition for robust
stability. If this condition is satisfied, the closed loop stability
of [N M] with K, is maintained. Minimum H™-norm of
the closed loop system with G and K is defined by

S W -GK,) 'M™!
R n [ %K,(I—GK,)-IM—I] H . @

where k is a reducing order.
To guarantee the robust stability, lower bound of &,

should be £, €max- £,>0, but it is not a priort bound
because we have to find & ,m, from the reduced order plant.

If we assume to be Emax< €,max, @ priori bound

E,2 Emay — £ is satisfied. Therefore, €ma > € is a robust
stability condition and (& max -—el)_1 is a performance bound

with reduced order controller.
€ ymax With €nay,

We cannot always replace
because &ma < € ,max IS not proved. But
we can see that it is satisfied in many cases.

For controller design, though any H°~ design methods can
be used, we use the J-lossless coprime factorization approach
in here. We construct the CSD(Chain Scattering Description)
standard plant of H~ mixed sensitivity problem, find
J-lossless left and right coprime factors by two Riccati
equations and get the H™ controller from the J-lossless right
coprime factor. In H~ mixed sensitivity problem, if we use
the weighting function Wy, the standard plant in CSD is

always stable and has a good property that H~ controller can
be designed by solving just one Riccati equation.

4. Numerical example

To illustrate the appropriateness of the proposed approach,
we use a depth model of underwater vehicle. The plant is

given by
G= 2.8649(s+0.6159(s+4.7767)(s —14.06358)
s(s+0.063584)(s+0.4734)(s+0.6299)(s +6.6856) °

Though this plant has a pole on jw-axis, coprime factors of
plant with Wy is always stable. Therefore the proposed
method can be directly used to get the reduced order
controller without stable and antistable partial fraction of
plant. We compare the robust stability conditions in both
cases; one is the reduction of plant in eqn. (3), the other is
frequency weighted coprime factor reduction in eqn. (6), and
the left side norm of each equations is shown in table 1.

Table 1. Robust conditions

order(K;) 6 5 4 3
eqn. (3) 0.0004 0.0227 1.0332 >1
eqn. (6) 0.0126 0.0266 0.9755 >1

The result of eqgn. (6) represents that the robust stability
conditions are satisfied. But the result of eqn. (3) shows that
the robust stability conditions are not satisfied in using 4th
order controller. Even if the condition is not satisfied, the
implemented closed loop system with 4th order controller is
stable. Therefore the proposed robust stability condition is
more reliable.

To observe the preservation of performance, Fig 5 shows
the time response of closed loop systems with full order and
reduced order controller.

] 2 4 6 8

[sec) 10

Fig. 5. Time responses of closed loop systems.

In this plant, time response of the reduction of plant itself
is similar to one of frequency weighted coprime factor
reduction of plant

5. Conclusions

We derived a robust stability condition for the frequency
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weighted coprime factor reduction of plant in H™ mixed
sensitivity problem. The nominal plant is factorized to
coprime fctors by Wy and we can get the reduced order
controller without stable and antistable partial fraction of
plant. The weighting functions are impotant factors to
improve the performance of closed loop with the reduced
order controller, but it is very hard to select. In the furture
reserach, It is needed to derive a tight priori bound for the
robust stability and preservation of performance. And we
have to find a good method to reduce the controller by
frequency weighted coprime factor reduction of compensator.

References

[11 B. D. O. Anderson and Y. Liu, “Controller reduction:
Concepts and approaches,” IEEE Trans. Automatic
Control, vol. 34, no. 8, pp. 802-812, Aug. 1989.

[2] D. Enns, “Model reduction for contrel system design,”
Ph.D. Dissertation, Department of  Aeronautics,
Standford Univ., Standford, CA, 1984.

[3] K. Glover, “All optimal Hankel-norm approximation of
linear multivariable systems and their L™ error bounds,”
International Journal of Control, vol. 39, no. 6, pp.
1115-1193, June 1984.

[4] K. Glover, “Robust stabilization of linear multivariable
systems: Relations to approximation,” International
Journal of Control, vol. 43, no. 3, pp. 741-766, March
1986.

[5]1 B. C. Moore, “Principal component analysis in linear
system:  Controllability, obsevability, and model
reduction,” IEEE Trans. Automatic Control, vol. 26, no.
1, pp. 17-32, 1981.

[6] L. Pernebo and L. M. Silverman, “Model reduction via
balanced state space representations,” IEEE Trans.
Automatic Control, vol. 27, no. 2, pp. 382-387, April
1982.

[7] 1. Postlethwaite, M. C. Tsai, and D. W. Gu, “Weighting
function selection in H”design,” Proc IFAC Conference,
Tallinn, Estonia.

[8] R. E. Skelton and B. D. O. Anderson, “q-Markov
covariance equivalent realization,” International Jjournal
of Control, vol. 44, no. 5, pp. 1477-1490, 1986.

[91 M. C. Tsai and J. M. Geddes, and 1. Postlethwaite,
“Pole-zero cancellations and closed loop properties of an
H”mixed sensitivity design problem,” Automatica, vol.
28, no. 3, pp. 519-530, 1992.

[10] M. C. Tsai and 1. Postlethwaite, “On J-lossless coprime
factorization and H™ control,” International Journal of
Robust and Nonlinear Control, vol. 1, pp. 47-68, 1991.

343



