• Title/Summary/Keyword: Frequency Separation

Search Result 568, Processing Time 0.028 seconds

A study on the HF monolithic ceramic filter using thickness mode (두께진동모드를 이용한 고주파대역의 단일체 세라믹필터에 대한 연구)

  • Park, Chang-Yub;Wi, Gyu-Jin;Lee, Doo-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.242-244
    • /
    • 1987
  • Using the energy trapping theory and the acoustic coupling theory. the Bandpass filter(center frequency = 10.7 MHz) of the fundamental thickness mode was made from the composition of $Pb_{0.96}Sr_{0.04}(Zr_{0.53}Ti_{0.47})O_3$+ 1wt% $Fe_2O_3$. Also, in the double mode monolithic filter, It was observed that as decreasing the size of the electrodes, or shortening the gap between two electrodes, the percent frequency separation was increased. Based on these. a 10.7 MHz uniwafer filter was made having the characteristics that bandwidth was 700 KHz and the percent frequency separation was 6 [dB] and selectivity was 29 [dB], end spurious response was 24 [dB] and insertion loss was 7 [dB].

  • PDF

A Study on the Dynamic Stall Characteristics of an Elliptical Airfoil by Flow Pattern Measured by PIV (PIV 측정 흐름형태에 의한 타원형 날개꼴의 동적 실속 특성 연구)

  • Lee, Ki-Young;Sohn, Myong-Hwan;Jung, Hyong-Seok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.3 s.22
    • /
    • pp.116-123
    • /
    • 2005
  • An experimental investigation on the static and dynamic stall characteristics of elliptic airfoil was performed by PIV velocity field measurements. The flow Reynolds number was $3.13{\times}10^5$ and the reduced frequency of the pitch oscillation ranged from 0.075 to 0.125. The onset of static stall was caused by boundary layer separation which started at the trailing edge and progressed toward the leading edge. However, dynamic stall was caused by the vortex shed at the leading edge region and the flow field showed a vortex dominated flow with turbulent separation and alternate vortex shedding. The increase of reduced frequency increased the dynamic stall angle of attack and intensified the flow hysteresis in the down-stroke phase.

Output only system identification using complex wavelet modified second order blind identification method - A time-frequency domain approach

  • Huang, Chaojun;Nagarajaiah, Satish
    • Structural Engineering and Mechanics
    • /
    • v.78 no.3
    • /
    • pp.369-378
    • /
    • 2021
  • This paper reviewed a few output-only system identification algorithms and identified the shortcomings of those popular blind source separation methods. To address the issues such as less sensors than the targeted modal modes (under-determinate problem), repeated natural frequencies as well as systems with complex mode shapes, this paper proposed a complex wavelet modified second order blind identification method (CWMSOBI) by transforming the time domain problem into time-frequency domain. The wavelet coefficients with different dominant frequencies can be used to address the under-determinate problem, while complex mode shapes are addressed by introducing the complex wavelet transformation. Numerical simulations with both high and low signal-to-noise ratios validate that CWMSOBI can overcome the above-mentioned issues while obtaining more accurate identified results than other blind identification methods.

Separation of passive sonar target signals using frequency domain independent component analysis (주파수영역 독립성분분석을 이용한 수동소나 표적신호 분리)

  • Lee, Hojae;Seo, Iksu;Bae, Keunsung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.2
    • /
    • pp.110-117
    • /
    • 2016
  • Passive sonar systems detect and classify the target by analyzing the radiated noises from vessels. If multiple noise sources exist within the sonar detection range, it gets difficult to classify each noise source because mixture of noise sources are observed. To overcome this problem, a beamforming technique is used to separate noise sources spatially though it has various limitations. In this paper, we propose a new method that uses a FDICA (Frequency Domain Independent Component Analysis) to separate noise sources from the mixture. For experiments, each noise source signal was synthesized by considering the features such as machinery tonal components and propeller tonal components. And the results of before and after separation were compared by using LOFAR (Low Frequency Analysis and Recording), DEMON (Detection Envelope Modulation On Noise) analysis.

An Enhancement Technique for Separation of Direct Light and Global Light Using High Frequency Illumination pattern (고주파 조명패턴을 사용한 직접광과 간접광의 분리성능 향상 기법)

  • Jo, Mi-Ri-Na;Park, Dong-Gyu
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.9
    • /
    • pp.1262-1272
    • /
    • 2009
  • In computer graphics, there exist many studies about illumination and radiance for a realistic description of the 3D modeling and rendering. When we see a scene, the scene is lit by a source of light and the radiance of the points by a source in the scene. The radiance has direct light and glight component. The direct light gets lights directly from light source, but the global light gets lights indirectly by interreflections among complicated geometrical components. In this paper, we studied a method for increasing the accuracy of separating direct light and global light components from a scene by using high frequency illumination pattern. For experiments, we applied the separating method of Nayar's and found the best configurations for the separation through the experiments. We improved the separation accuracy of direct and global light by measuring the value of unilluminated area, which depends on the characteristics of object. Furthermore, we enhanced invisible scene of the global light by applying the image filtering technique.

  • PDF

A Coexistence Study of Low-power Short-range Wireless Network and Incumbent Service in the 6GHz band (6GHz 비면허 대역의 저전력 근접 무선통신과 기존 무선업무와의 공존 연구)

  • Kim, Seung-Nam;Lee, Il-Kyoo;Sung, Joo-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.8
    • /
    • pp.1074-1081
    • /
    • 2021
  • It has recently been noticed that the headway of unlicensed wireless technology is necessary as user's demands of wireless tech increase and the development of high-speed data service by using low-power short-range wireless network is needed. Hence, it is inevitable to study sharing and coexistence for broadband spectrum of diverse unlicensed application with wide bandwidth. In this paper, an interference examination between unlicensed WiFi (Wireless Fidelity) in the 6GHz and OB (Outside Broadcasting) system which is an incumbent service in the same frequency band was conducted and it suggests separation distance for the coexistence. Thus, MCL (Minimum Coupling Loss) and MC (Monte Carlo) methods were used to set up interference scenarios for the interference analysis and compute the separation distance between two systems according to the same frequency band and frequency separation.

Modal parameter identification of tall buildings based on variational mode decomposition and energy separation

  • Kang Cai;Mingfeng Huang;Xiao Li;Haiwei Xu;Binbin Li;Chen Yang
    • Wind and Structures
    • /
    • v.37 no.6
    • /
    • pp.445-460
    • /
    • 2023
  • Accurate estimation of modal parameters (i.e., natural frequency, damping ratio) of tall buildings is of great importance to their structural design, structural health monitoring, vibration control, and state assessment. Based on the combination of variational mode decomposition, smoothed discrete energy separation algorithm-1, and Half-cycle energy operator (VMD-SH), this paper presents a method for structural modal parameter estimation. The variational mode decomposition is proved to be effective and reliable for decomposing the mixed-signal with low frequencies and damping ratios, and the validity of both smoothed discrete energy separation algorithm-1 and Half-cycle energy operator in the modal identification of a single modal system is verified. By incorporating these techniques, the VMD-SH method is able to accurately identify and extract the various modes present in a signal, providing improved insights into its underlying structure and behavior. Subsequently, a numerical study of a four-story frame structure is conducted using the Newmark-β method, and it is found that the relative errors of natural frequency and damping ratio estimated by the presented method are much smaller than those by traditional methods, validating the effectiveness and accuracy of the combined method for the modal identification of the multi-modal system. Furthermore, the presented method is employed to estimate modal parameters of a full-scale tall building utilizing acceleration responses. The identified results verify the applicability and accuracy of the presented VMD-SH method in field measurements. The study demonstrates the effectiveness and robustness of the proposed VMD-SH method in accurately estimating modal parameters of tall buildings from acceleration response data.

Hybrid Sensor-less Control of Permanent Magnet Synchronous Motor in Low-speed Region

  • Yamamoto, Yasuhiro;Funato, Hirohito;Ogasawara, Satoshi
    • Journal of Power Electronics
    • /
    • v.8 no.4
    • /
    • pp.301-308
    • /
    • 2008
  • This paper proposes a method of improving the stability in sensor-less control of permanent magnet synchronous motors. The control method for low-speed region is divided into two: One is a high frequency method, which involves a problem of reverse rotation once misdetection of the permanent magnet polarity should occur, and another one is a current drive method, which has a problem that phase and speed oscillations are caused by quick speed changes. Hence, authors propose adoption of the current drive method for the basic control system with added compensation of stabilization by means of the high frequency method. This combination secures stable control with no risk of reversal and less vibration. In addition, authors have also considered a frequency separation filter of a shorter delay time so that current control performance will not lower even when high frequencies are introduced. This filter has achieved simplified compensation using repetitive characteristic through the utilization of the periodicity of high frequency current. Simulation and experiment have been conducted to verify that the stable performance of this system is improved.

A Method of Sound Segmentation in Time-Frequency Domain Using Peaks and Valleys in Spectrogram for Speech Separation (음성 분리를 위한 스펙트로그램의 마루와 골을 이용한 시간-주파수 공간에서 소리 분할 기법)

  • Lim, Sung-Kil;Lee, Hyon-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.8
    • /
    • pp.418-426
    • /
    • 2008
  • In this paper, we propose an algorithm for the frequency channel segmentation using peaks and valleys in spectrogram. The frequency channel segments means that local groups of channels in frequency domain that could be arisen from the same sound source. The proposed algorithm is based on the smoothed spectrum of the input sound. Peaks and valleys in the smoothed spectrum are used to determine centers and boundaries of segments, respectively. To evaluate a suitableness of the proposed segmentation algorithm before that the grouping stage is applied, we compare the synthesized results using ideal mask with that of proposed algorithm. Simulations are performed with mixed speech signals with narrow band noises, wide band noises and other speech signals.

Audio Source Separation Method Based on Beamspace-domain Multichannel Non-negative Matrix Factorization, Part I: Beamspace-domain Multichannel Non-negative Matrix Factorization system (빔공간-영역 다채널 비음수 행렬 분해 알고리즘을 이용한 음원 분리 기법 Part I: 빔공간-영역 다채널 비음수 행렬 분해 시스템)

  • Lee, Seok-Jin;Park, Sang-Ha;Sung, Koeng-Mo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.5
    • /
    • pp.317-331
    • /
    • 2012
  • In this paper, we develop a multichannel blind source separation algorithm based on a beamspace transform and the multichannel non-negative matrix factorization (NMF) method. The NMF algorithm is a famous algorithm which is used to solve the source separation problems. In this paper, we consider a beamspace-time-frequency domain data model for multichannel NMF method, and enhance the conventional method using a beamspace transform. Our decomposition algorithm is applied to audio source separation, using a dataset from the international Signal Separation Evaluation Campaign 2010 (SiSEC 2010) for evaluation.