• 제목/요약/키워드: Frequency Response Model

검색결과 1,400건 처리시간 0.033초

유리분수함수 근사법에 기반한 풍하중을 받는 구조물의 동특성 추정 (Modal Parameter Estimations of Wind-Excited Structures based on a Rational Polynomial Approximation Method)

  • 김상범;이완수;윤정방
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.287-292
    • /
    • 2005
  • This paper presents a rational polynomial approximation method to estimate modal parameters of wind excited structures using incomplete noisy measurements of structural responses and partial measurements of wind velocities only. A stochastic model of the excitation wind force acting on the structure is estimated from partial measurements of wind velocities. Then the transfer functions of the structure are approximated as rational polynomial functions. From the poles and zeros of the estimated rational polynomial functions, the modal parameters, such as natural frequencies, damping ratios, and mode shapes are extracted. Since the frequency characteristics of wind forces acting on structures can be assumed as a smooth Gaussian process especially around the natural frequencies of the structures according to the central limit theorem (Brillinger, 1969; Yaglom, 1987), the estimated modal parameters are robust and reliable with respect to the assumed stochastic input models. To verify the proposed method, the modal parameters of a TV transmission tower excited by gust wind are estimated. Comparison study with the results of other researchers shows the efficacy of the suggested method.

  • PDF

지진에 의한 원전 보조건물 전단벽의동적 응답 특성 추정 (Seismic Response Characterization of Shear Wall in Auxiliary Building of Nuclear Power Plant)

  • 모터 라만;타미나 나하르;백건휘;김두기
    • 한국지진공학회논문집
    • /
    • 제25권3호
    • /
    • pp.93-102
    • /
    • 2021
  • The dynamic characterization of a three-story auxiliary building in a nuclear power plant (NPP) constructed with a monolithic reinforced concrete shear wall is investigated in this study. The shear wall is subjected to a joint-research, round-robin analysis organized by the Korea Atomic Energy Research Institute, South Korea, to predict seismic responses of that auxiliary building in NPP through a shake table test. Five different intensity measures of the base excitation are applied to the shaking table test to get the acceleration responses from the different building locations for one horizontal direction (front-back). Simultaneously to understand the global damage scenario of the structure, a frequency search test is conducted after each excitation. The primary motivation of this study is to develop a nonlinear numerical model considering the multi-layered shell element and compare it with the test result to validate through the modal parameter identification and floor responses. In addition, the acceleration amplification factor is evaluated to judge the dynamic behavior of the shear wall with the existing standard, thus providing theoretical support for engineering practice.

Optimized AI controller for reinforced concrete frame structures under earthquake excitation

  • Chen, Tim;Crosbie, Robert C.;Anandkumarb, Azita;Melville, Charles;Chan, Jcy
    • Advances in concrete construction
    • /
    • 제11권1호
    • /
    • pp.1-9
    • /
    • 2021
  • This article discusses the issue of optimizing controller design issues, in which the artificial intelligence (AI) evolutionary bat (EB) optimization algorithm is combined with the fuzzy controller in the practical application of the building. The controller of the system design includes different sub-parts such as system initial condition parameters, EB optimal algorithm, fuzzy controller, stability analysis and sensor actuator. The advantage of the design is that for continuous systems with polytypic uncertainties, the integrated H2/H∞ robust output strategy with modified criterion is derived by asymptotically adjusting design parameters. Numerical verification of the time domain and the frequency domain shows that the novel system design provides precise prediction and control of the structural displacement response, which is necessary for the active control structure in the fuzzy model. Due to genetic algorithm (GA), we use a hierarchical conditions of the Hurwitz matrix test technique and the limits of average performance, Hierarchical Fitness Function Structure (HFFS). The dynamic fuzzy controller proposed in this paper is used to find the optimal control force required for active nonlinear control of building structures. This method has achieved successful results in closed system design from the example.

Variation of reliability-based seismic analysis of an electrical cabinet in different NPP location for Korean Peninsula

  • Nahar, Tahmina Tasnim;Rahman, Md Motiur;Kim, Dookie
    • Nuclear Engineering and Technology
    • /
    • 제54권3호
    • /
    • pp.926-939
    • /
    • 2022
  • The area of this study will cover the location-wise seismic response variation of an electrical cabinet in nuclear power point (NPP) based on classical reliability analysis. The location-based seismic ground motion (GM) selection is carried out with the help of probabilistic seismic hazard analysis using PSHRisktool, where the variation of reliability analysis can be understood from the relation between the reliability index and intensity measure. Two different approaches such as the first-order second moment method (FOSM) and Monte Carlo Simulation (MCS) are helped to evaluate and compare the reliability assessment of the cabinet. The cabinet is modeled with material uncertainty utilizing Steel01 as the material model and the fiber section modeling approach is considered to characterize the section's nonlinear reaction behavior. To verify the modal frequency, this study compares the FEM result with recorded data using Least-Squares Complex Exponential (LSCE) method from the impact hammer test. In spite of a few investigations, the main novelty of this study is to introduce the reader to check and compare the seismic reliability assessment variation in different seismic locations and for different earthquake levels. Alongside, the betterment can be found by comparing the result between two considered reliability estimation methods.

A hybrid artificial intelligence and IOT for investigation dynamic modeling of nano-system

  • Ren, Wei;Wu, Xiaochen;Cai, Rufeng
    • Advances in nano research
    • /
    • 제13권2호
    • /
    • pp.165-174
    • /
    • 2022
  • In the present study, a hybrid model of artificial neural network (ANN) and internet of things (IoT) is proposed to overcome the difficulties in deriving governing equations and numerical solutions of the dynamical behavior of the nano-systems. Nano-structures manifest size-dependent behavior in response to static and dynamic loadings. Nonlocal and length-scale parameters alongside with other geometrical, loading and material parameters are taken as input parameters of an ANN to observe the natural frequency and damping behavior of micro sensors made from nanocomposite material with piezoelectric layers. The behavior of a micro-beam is simulated using famous numerical methods in literature under base vibrations. The ANN was further trained to correlate the output vibrations to the base vibration. Afterwards, using IoT, the electrical potential conducted in the sensors are collected and converted to numerical data in an embedded mini-computer and transferred to a server for further calculations and decision by ANN. The ANN calculates the base vibration behavior with is crucial in mechanical systems. The speed and accuracy of the ANN in determining base excitation behavior are the strengths of this network which could be further employed by engineers and scientists.

A novel hybrid control of M-TMD energy configuration for composite buildings

  • ZY Chen;Yahui Meng;Ruei-Yuan Wang;T. Chen
    • Steel and Composite Structures
    • /
    • 제48권4호
    • /
    • pp.475-483
    • /
    • 2023
  • In this paper, a new energy-efficient semi-active hybrid bulk damper is developed that is cost-effective for use in structural applications. In this work, the possibility of active and semi-active component configurations combined with suitable control algorithms, especially vibration control methods, is explored. The equations of motion for a container bridge equipped with an MDOF Mass Tuned Damper (M-TMD) system are established, and the combination of excitation, adhesion, and control effects are performed by a proprietary package and commercial custom submodel software. Systematic methods for the synthesis of structural components and active systems have been used in many applications because of the main interest in designing efficient devices and high-performance structural systems. A rational strategy can be established by properly controlling the master injection frequency parameter. Simulation results show that the multiscale model approach is achieved and meets accuracy with high computational efficiency. The M-TMD system can significantly improve the overall response of constrained structures by modestly reducing the critical stress amplitude of the frame. This design can be believed to build affordable, safe, environmentally friendly, resilient, sustainable infrastructure and transportation.

The Effect of Perceived Value of Education Training for Small and Medium Sized Enterprise (SME) Cooperatives on Job Performance

  • Byoung-Jo HWANG;Chang-ki HONG
    • 융합경영연구
    • /
    • 제11권3호
    • /
    • pp.11-23
    • /
    • 2023
  • Purpose: This study empirically studied the effects of the perceived value of education and training on SME cooperative on job performance. Research design, data and methodology: From November 7 to 9, 2022, a survey was conducted targeting members and executives of SME cooperatives in their 20s and 60s across the country, and a total of 217 people were used for the final analysis. Verification of the research model was performed using SPSS & AMOS. Frequency analysis was conducted to examine the sample characteristics. Results: First, perceived value (functional value, service performance value, emotional value, convenience value) did not have a significant effect on organizational commitment. Second, perceived value (functional value, service performance value, emotional value, convenience value) were found to have a significant positive (+) effect on job satisfaction. Third, job satisfaction was found to have a significant positive (+) effect on organizational commitment. Fourth, organizational commitment was found to have a significant positive (+) effect on job performance. Fifth, job satisfaction was found to have a significant positive (+) effect on job performance. Conclusions: These results suggest that the perceived value of SME cooperative education and training can affect organizational commitment and job performance through job satisfaction, so it is necessary to strengthen online education and training to meet the emotional response of training subjects along.

다양한 설계 요구조건을 고려한 복합재 평판의 신뢰성 해석 (Reliability Analysis for Composite Plate with the Various Design Requirement)

  • 이석제;장문호;김인걸
    • Composites Research
    • /
    • 제20권4호
    • /
    • pp.25-30
    • /
    • 2007
  • 섬유강화 복합재료는 비강도 및 비 강성도가 뛰어나기 때문에 무게 절감을 위해 항공우주, 선박, 기계 같은 다양한 공학 분야에 널리 사용되고 있다. 각 층의 재료 물성치는 일반적인 금속재료에 비해 큰 변동성을 갖는 것으로 알려져 있으며 하중 방향에 따라 매우 민감하게 반응한다. 그러므로, 복합재 적층판의 설계에서 불확실성을 고려하는 것은 매우 중요하다. 본 논문은 COMSOL과 MATLAB을 이용하여 끝단 변위, 고유진동수, 좌굴응력이 설계 요구조건으로 정의된 경우, 재료 물성치의 불확실한 변동성을 고려하여 복합재 구조물의 거동에 대한 신뢰성 해석을 수행하였다.

유연한 스커트를 가진 오일붐의 운동응답해석 (The Motion Response of an Oil Boom with Flexible Skirt)

  • 성홍근;조일형;최항순
    • 한국해안해양공학회지
    • /
    • 제7권2호
    • /
    • pp.156-162
    • /
    • 1995
  • 스커트의 유연성을 고려한 2차원 오일붐 모델에 대한 수치해법을 개발하였다. 본 수치모델에서는 부체를 강체로, 스커트를 장력이 걸려 있는 막으로, 스커트의 아래끝엔 집중질량이 놓여 있다고 가정하였다. 유동은 포텐셜이라고 가정하였으며 부체와 스커트의 연결부에서는 변위가 연속이라는 운동학적 조건을 그리고 스커트의 아래끝에는 집중질량에 대한 동력학적인 조건을 부가하였다. 수치해법은 선형포텐셜유동 이론에 근거한 Green 함수방법에 기초를 두고 있다. 스커트의 변형을 미리 알 수 없으므로 방사 포텐셜(radiation potential)과 부체의 변위 그러고 스커트의 변형을 동시에 구하는 방식을 택하였다. Green 정리를 적용하여 얻은 적분방정식과 부체의 운동방정식 그리고 스커트의 변형 관계식을 이산화하여 방사포텐셜과 부체의 변위 그리고 스커트의 변위에 대한 선형대수 방정식을 얻었다. 수치계산결과에 의하면 스커트의 유연성이 부체의 운동응답을 다소 줄일 수 있으며 부체의 공진체계를 바꿀 수 있음을 확인하였다. 그리고 오일붐의 운동응답특성에 영향을 주는 인자들 중에서 스커트의 길이와 집중질량을 파라미터로 하여 오일붐 모델의 운동응답특성을 비교해 보았다. 스커트가 유연한 경우와 스커트가 강체인 경우의 저주파수 극한해는 거의 일치하고 있어 수치해의 타당성을 간접적으로 확인할 수 있었다.

  • PDF

무선 가속도센서 시스템을 이용한 건축물의 실시간 피드백 진동제어 - 시스템 구축 및 기초성능 평가 - (Real-time Feedback Vibration Control of Structures Using Wireless Acceleration Sensor System - System Design and Basic Performance Evaluation -)

  • 전준용;박기태;이진옥;허광희;이우상
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제17권2호
    • /
    • pp.21-32
    • /
    • 2013
  • 본 논문에서는 건축물의 실시간 피드백 진동제어를 위한 기초연구로써, 자체 기술력을 바탕으로 개발된 무선 가속도센서 시스템 및 프로토타입 (Prototype) AMD 시스템을 결합하여 피드백 진동제어 시스템을 구성하고, 모형 건축물을 대상으로 구성된 제어시스템의 기초성능을 평가하고자 하였다. 이를 위하여 본 논문에서는 우선 MEMS 센서 소자 및 블루투스 통신 모듈 기반의 무선 가속도 센서 유닛, 실시간 가속도 응답획득 및 제어법칙에 근거한 제어출력을 구현하도록 구성한 운영프로그램 등을 개발하였다. 또한 AC 서보모터를 이용해 기동되도록 설계한 프로토타입 AMD 및 모터 드라이버 시스템을 구성하였다. 마지막으로 이를 이용해 실시간 피드백 진동제어 시스템을 구성하였고, 2층 모형 건축물을 대상으로 실험실 규모의 진동제어 실험을 수행하여 목적된 구조물의 진동저감 효과를 정량적으로 분석하였다. 실험의 결과, 모형 구조물의 1차 및 2차 공진주파수 그리고 랜덤주파수 등의 실험조건에서 명확한 진동저감의 효과를 확인할 수 있었으며, 종국적으로 본 논문에서 개발한 무선 가속도센서 시스템 및 AMD 시스템이 향후 여타 구조물의 진동제어를 위한 효과적인 수단으로 응용될 수 있는 가능성을 확인하였다.