• Title/Summary/Keyword: Frequency Fluctuation

Search Result 513, Processing Time 0.027 seconds

An experimental study of the overall characteristics in an aero-valved pulsating combustor (空氣밸브型 脈動燃燒器의 特性에 관한 實驗的 硏究)

  • 오상헌;최병륜;임광열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.2
    • /
    • pp.271-278
    • /
    • 1987
  • The experimental study was carried out to investigate the pressure fluctuation, operating frequency, noise emission and combustion characteristics in an aero-valved pulsating combustor. Measurements of the pressure fluctuation, mean temperature and ion current inside the combustion chamber indicate that combustion phenomena are characteristically similar to those in the diffusion flame. The measured frequency schedue indicates that the acoustic theory of the quarter wave tube can be approximated to give the operating frequency, but correction factor must be involved to estimate the correct operating frequency. The spectral behavior of the noise emission exhibits that frequency bands with high noise intensity are narrowly restricted to the neighborhood of the operating frequency signalling the low-frequency combustion characteristics of the pulsating combustor. Measurements of the operating characteristics as variation of the fuel nozzle diameter and injection angle with 4 fuel nozzles have been made, and it was found that the system produced the stable operating conditions up to the turn down ratio of 3 when the fuel nozzle diameter is 1.2mm, and the optimum fuel injection angle is thought to be in the neighborhood of 30.deg. radially.

Pressure Fluctuation Induced by Propeller Sheet Cavitation with Consideration of the Near Field Effect (근접장 효과를 고려한 추진기 얇은 층 캐비테이션에 의해 유기되는 변동압력에 관한 연구)

  • Seol, Han-Shin;Moon, Il-Sung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.2
    • /
    • pp.105-113
    • /
    • 2009
  • A theoretical study on the pressure fluctuation induced by a propeller was carried out in this study. The main objective of this study is to analyze the source mechanism of the pressure fluctuation induced by propeller sheet cavitation. To analyze the pressure fluctuation induced by propeller sheet cavitation, modern acoustic theory was applied. Governing equation of pressure fluctuation induced by sheet cavitation was derived using Ffowcs Williams proposed time domain acoustic approaches. Several factors affecting pressure fluctuation were analyzed based on the derived governing equation. Pressure fluctuation result was represented by combined results of the far field term and near field term. Finally, the physical mechanism of pressure fluctuation at the blade rate frequency was analyzed using numerically generated cavitation volume variation.

Evaluation on the Effect of Whole Body Vibration on EEG Frequency-Fluctuation (인체진동이 뇌파변동리듬에 미치는 영향평가)

  • Min, Byung-Chan;Kim, Hyoung-Wook;Kim, Ji-Kwan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.30 no.4
    • /
    • pp.71-77
    • /
    • 2007
  • In this study, reactions of central nervous systems working against different conditions of forced frequency and acceleration were measured and analyzed. The experiment are conducted with health men. The steady vibration conditions of forced frequency (0.315m/s2-1.0Hz, 0.315m/s2-10Hz and 10Hz-1.0m/s2) are used and the waves of EEG (Electroencephalogram) are measured. As a result, this paper shows that the ${\alpha}-wave$ of frontal lobe transfers from low to high frequency band under the vibration environment. Additionally, the average frequency of ${\alpha}-wave$ is higher under the vibration than under non-vibration environment. In the case of forced frequency of 1.0Hz-0.315m/s2, the feeling with the vibration are nearly same compared with the non-vibration condition. But in the case of 10Hz-1.0m/s2, uncomfortable feeling increased compared with the non-vibration condition. This study also shows the relationship between fluctuation slop and feeling. From this study, it is found that the effect of vibration on human depends on acceleration characteristics. Highly accelerating vibration is more harmful to human.

A Numerical Study on the Source Mechanism of the Pressure Fluctuation Induced by Propeller Cavitation

  • Seol, Han-Shin;Moon, Il-Sung
    • Journal of Ship and Ocean Technology
    • /
    • v.12 no.2
    • /
    • pp.32-40
    • /
    • 2008
  • This paper deals with the pressure fluctuation induced by propeller cavitation. The main objective of this study is to analyze the source mechanism of the pressure fluctuation induced by propeller cavitation. To analyze the source mechanism of the pressure fluctuation, modem acoustic theory is applied. The governing equation of the pressure fluctuation induced by propeller is derived using Ffowcs Williams-Hawkings proposed time domain acoustic method. The physical mechanism of pressure fluctuation at the blade rate frequency is analyzed using numerically generated cavitation volume variation. Finally the characteristics of the pressure fluctuation induced by a propeller are presented.

Improvement of Noise Characteristics in Super-RENS Disc (Super-RENS 디스크의 노이즈 특성 향상)

  • Kim, Joo-Ho;Hwang, In-Oh;Kim, Hyun-Ki;Park, In-Sik;Bae, Jae-Cheol
    • Transactions of the Society of Information Storage Systems
    • /
    • v.1 no.1
    • /
    • pp.48-52
    • /
    • 2005
  • The research topic of super-RENS technology is shifting from the signal intensity (CNR; Carrier to Noise Ratio) to the signal uniformity (Jitter or bER). To achieve an uniform signal characteristics, it is important to reduce signal fluctuation in a super-RENS disc. In this study, we investigated the relation between signal fluctuation and low frequency noise (LFN), and analyzed LFN increase in recording and readout processes. It was found that signal fluctuation had a close relationship with the LFN. Also, it was found that the recorded mark shape such a bubble type and high readout power increased the LFN in recording and readout process of a super-RENS disc. So, using non-bubble type recording material and low super-resolution readout material, we markedly improved the LFN in a super-RENS disc.

  • PDF

1/f-LIKE FREQUENCY FLUCTUATION IN FRONTAL ALPHA WAVE AS AN INDICATOR OF EMOTION

  • Yoshida, Tomoyuki
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2000.04a
    • /
    • pp.99-103
    • /
    • 2000
  • There are two approaches in the study of emotion in the physiological psychology. The first is to clarify the brain mechanism of emotion, and the second is to evaluate objectively emotions using physiological responses along with our feeling experience. The method presented here belongs to the second one. Our method is based on the "level-crossing point detection" method. which involves the analysis of frequency fluctuations of EEG and is characterized by estimation of emotionality using coefficients of slopes in the log-power spectra of frequency fluctuation in alpha waves on both the left and right frontal lobe. In this paper we introduce a new theory of estimation on an individual's emotional state by using our non-invasive and easy measurement apparatus.

  • PDF

A Study on Gas Pressure Fluctuation Characteristics inside Pipe Line Passing Through a Snubber at Hydrogen Compressor (수소압축기 스너버 관로 내부의 맥동파 특성에 관한 연구)

  • Shim, K.J.;Yi, C.S.;Akbar, Wanda Ali;Chung, H.S.;Jeong, H.M.
    • Journal of Power System Engineering
    • /
    • v.10 no.4
    • /
    • pp.165-171
    • /
    • 2006
  • An experiment to observe reduction of pressure fluctuation in the compressing system utilizing snubber has done. The experiment measured pressure at inlet and outlet of snubber. It used an air compressor as a model of hydrogen one. Snubber with buffer and snubber without buffer were used to get comprehensive comparison between both of that snubber. An analysis by using Fast Fourier Transform (FFT) method was conducted to verify working pressure frequency. With this method pure signal of static pressure was filtered from noisy signal. The experiment was run for several speeds of piston movement. It was controlled by adjustable frequency regulator that controled rotation of actuator motor. This was connected to the piston-reciprocating compressor with V-belt. From result obtained, the fluctuation was increasing proportionally when frequency of driver motor was increased.

  • PDF

Analysis on the Characteristics of Pressure Fluctuation for High Speed Train passing through Tunnels (고속열차가 터널내에서 받는 압력변동 특성 분석)

  • Park Choon-Soo;Seo Sung-Il;Kim Ki-Hwan;Lee Uk-Jae
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.690-695
    • /
    • 2004
  • In order to develop a high speed train, various conditions have been considered. Fatigue strength assessment by the fluctuation of pressure is an important one. In this study, the fluctuation and frequency of pressure is measured when KHST(Korean High Speed Train) passes through tunnels in the Kyung-Bu high-speed line. And the characteristics of pressure fluctuation is analysed and formulated. The results of analysis are as follows. The train entering speed and fluctuation value are related. The pressure increasing is generated in proportion to train velocity at leading car. When two train is passing through the tunnel, the pressure value is $1.5\~2$ times higher than one train is passing. The damping ratio of pressure fluctuation is about $92\%$. The number of pressure fluctuation in a tunnel is 4 to 6 times. The result in this study would be a good guidance to calculate the fatigue life and the reliability index of body structure.

  • PDF

Dynamic Characteristics of an Unsteady Flow Through a Vortex Tube

  • Kim, Chang-Soo;Sohn, Chang-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2209-2217
    • /
    • 2006
  • Dynamic flow characteristics of a counter-flow vortex tube is investigated using hot-wire and piezoelectric transducer (PZT) measurements. The experimental study is conducted over a range of cold air outlet ratios (Y=0.3, 0.5, 0.7, and 1.0) and inlet pressure 0.15 MPa. Temperatures are measured at the cold air outlet and along the vortex tube wall. Hot-wire is located at cold outlet and PZT is installed at inner vortex tube by mounting at throttle valve. The cold outlet temperature results show that the swirl flow of vortex tube is not axisymmetric. The hot-wire and PZT results show that there exist two distinct kinds of frequency, low frequency periodic fluctuations and high frequency periodic fluctuations. It is found that the low frequency fluctuation is consistent with the Helmholtz frequency and the high frequency fluctuation is strongly related with precession oscillation.

Effect of Text Transmission Performance on Delay Spread by Water Surface Fluctuation in Underwater Multipath Channel (수중 다중경로 채널에서 수면변동에 의한 지연확산이 텍스트 전송성능에 미치는 영향)

  • Park, Ji-Hyun;Kim, Jong-Wook;Yoon, Jong-Rak
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.1
    • /
    • pp.1-8
    • /
    • 2011
  • In this paper, a water tank experiment using Binary Frequency Shift Keying (BFSK) method for text transmission performance by water surface fluctuation is conducted. Water surface fluctuation and delay spread which affect the channel coherence bandwidth is a limiting factor in underwater acoustic communication. The amplitude fluctuation and delay spread the smooth surface and fluctuation surface, were identified. The effective delay spread of both cases are 5ms, 4ms corresponding to the coherence bandwidth of 200Hz, 250Hz, respectively. The bit error rate of BFSK modulated text transmission is about $10^{-4}$ in less than 200bps in smooth surface but less than 250bps in fluctuation surface. Therefore, this experiment shows that the water surface fluctuation is important factor determining the performance of the underwater acoustic transmission.