• 제목/요약/키워드: Frequency Domain Decomposition

검색결과 136건 처리시간 0.026초

Health monitoring of a new hysteretic damper subjected to earthquakes on a shaking table

  • Romo, L.;Benavent-Climent, A.;Morillas, L.;Escolano, D.;Gallego, A.
    • Earthquakes and Structures
    • /
    • 제8권3호
    • /
    • pp.485-509
    • /
    • 2015
  • This paper presents the experimental results obtained by applying frequency-domain structural health monitoring techniques to assess the damage suffered on a special type of damper called Web Plastifying Damper (WPD). The WPD is a hysteretic type energy dissipator recently developed for the passive control of structures subjected to earthquakes. It consists of several I-section steel segments connected in parallel. The energy is dissipated through plastic deformations of the web of the I-sections, which constitute the dissipative parts of the damper. WPDs were subjected to successive histories of dynamically-imposed cyclic deformations of increasing magnitude with the shaking table of the University of Granada. To assess the damage to the web of the I-section steel segments after each history of loading, a new damage index called Area Index of Damage (AID) was obtained from simple vibration tests. The vibration signals were acquired by means of piezoelectric sensors attached on the I-sections, and non-parametric statistical methods were applied to calculate AID in terms of changes in frequency response functions. The damage index AID was correlated with another energy-based damage index -ID- which past research has proven to accurately characterize the level of mechanical damage. The ID is rooted in the decomposition of the load-displacement curve experienced by the damper into the so-called skeleton and Bauschinger parts. ID predicts the level of damage and the proximity to failure of the damper accurately, but it requires costly instrumentation. The experiments reported in this paper demonstrate a good correlation between AID and ID in a realistic seismic loading scenario consisting of dynamically applied arbitrary cyclic loads. Based on this correlation, it is possible to estimate ID indirectly from the AID, which calls for much simpler and less expensive instrumentation.

Structural modal identification and MCMC-based model updating by a Bayesian approach

  • Zhang, F.L.;Yang, Y.P.;Ye, X.W.;Yang, J.H.;Han, B.K.
    • Smart Structures and Systems
    • /
    • 제24권5호
    • /
    • pp.631-639
    • /
    • 2019
  • Finite element analysis is one of the important methods to study the structural performance. Due to the simplification, discretization and error of structural parameters, numerical model errors always exist. Besides, structural characteristics may also change because of material aging, structural damage, etc., making the initial finite element model cannot simulate the operational response of the structure accurately. Based on Bayesian methods, the initial model can be updated to obtain a more accurate numerical model. This paper presents the work on the field test, modal identification and model updating of a Chinese reinforced concrete pagoda. Based on the ambient vibration test, the acceleration response of the structure under operational environment was collected. The first six translational modes of the structure were identified by the enhanced frequency domain decomposition method. The initial finite element model of the pagoda was established, and the elastic modulus of columns, beams and slabs were selected as model parameters to be updated. Assuming the error between the measured mode and the calculated one follows a Gaussian distribution, the posterior probability density function (PDF) of the parameter to be updated is obtained and the uncertainty is quantitatively evaluated based on the Bayesian statistical theory and the Metropolis-Hastings algorithm, and then the optimal values of model parameters can be obtained. The results show that the difference between the calculated frequency of the finite element model and the measured one is reduced, and the modal correlation of the mode shape is improved. The updated numerical model can be used to evaluate the safety of the structure as a benchmark model for structural health monitoring (SHM).

Structural health monitoring of a cable-stayed bridge using wireless smart sensor technology: data analyses

  • Cho, Soojin;Jo, Hongki;Jang, Shinae;Park, Jongwoong;Jung, Hyung-Jo;Yun, Chung-Bang;Spencer, Billie F. Jr.;Seo, Ju-Won
    • Smart Structures and Systems
    • /
    • 제6권5_6호
    • /
    • pp.461-480
    • /
    • 2010
  • This paper analyses the data collected from the $2^{nd}$ Jindo Bridge, a cable-stayed bridge in Korea that is a structural health monitoring (SHM) international test bed for advanced wireless smart sensors network (WSSN) technology. The SHM system consists of a total of 70 wireless smart sensor nodes deployed underneath of the deck, on the pylons, and on the cables to capture the vibration of the bridge excited by traffic and environmental loadings. Analysis of the data is performed in both the time and frequency domains. Modal properties of the bridge are identified using the frequency domain decomposition and the stochastic subspace identification methods based on the output-only measurements, and the results are compared with those obtained from a detailed finite element model. Tension forces for the 10 instrumented stay cables are also estimated from the ambient acceleration data and compared both with those from the initial design and with those obtained during two previous regular inspections. The results of the data analyses demonstrate that the WSSN-based SHM system performs effectively for this cable-stayed bridge, giving direct access to the physical status of the bridge.

A Method for Prediction of Quality Defects in Manufacturing Using Natural Language Processing and Machine Learning (자연어 처리 및 기계학습을 활용한 제조업 현장의 품질 불량 예측 방법론)

  • Roh, Jeong-Min;Kim, Yongsung
    • Journal of Platform Technology
    • /
    • 제9권3호
    • /
    • pp.52-62
    • /
    • 2021
  • Quality control is critical at manufacturing sites and is key to predicting the risk of quality defect before manufacturing. However, the reliability of manual quality control methods is affected by human and physical limitations because manufacturing processes vary across industries. These limitations become particularly obvious in domain areas with numerous manufacturing processes, such as the manufacture of major nuclear equipment. This study proposed a novel method for predicting the risk of quality defects by using natural language processing and machine learning. In this study, production data collected over 6 years at a factory that manufactures main equipment that is installed in nuclear power plants were used. In the preprocessing stage of text data, a mapping method was applied to the word dictionary so that domain knowledge could be appropriately reflected, and a hybrid algorithm, which combined n-gram, Term Frequency-Inverse Document Frequency, and Singular Value Decomposition, was constructed for sentence vectorization. Next, in the experiment to classify the risky processes resulting in poor quality, k-fold cross-validation was applied to categorize cases from Unigram to cumulative Trigram. Furthermore, for achieving objective experimental results, Naive Bayes and Support Vector Machine were used as classification algorithms and the maximum accuracy and F1-score of 0.7685 and 0.8641, respectively, were achieved. Thus, the proposed method is effective. The performance of the proposed method were compared and with votes of field engineers, and the results revealed that the proposed method outperformed field engineers. Thus, the method can be implemented for quality control at manufacturing sites.

Estimation of Dynamic Characteristics of Existing Dam Floodgate Using Ambient Vibration (상시 진동을 이용한 댐 수문의 동특성 추정)

  • Kim, Nam-Gyu;Lee, Jong-Jae;Bea, Jung-Ju
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • 제31권4호
    • /
    • pp.343-350
    • /
    • 2011
  • Recently, as the catastrophic disasters due to earthquake happen frequently all over the world, it draws lots of attention to seismic capacity evaluation and/or structural integrity assessment of deteriorated civil infra-structures. However, there have been few studies on the existing dam flood gates, expecially in Korea. In this study, a proper vibration testing method applicable to a dam flood gate has been suggested, since the dynamic characteristics of a darn flood gate can be fundamental data for seismic capacity evaluation or structural integrity assessment. The frequency domain decomposition technique has been incorporated for modal parameter identification. Two kinds of vibration tests using an impact hammer and ambient vibration sources were carried out on two types of dam floodgates with different shapes. Through the field tests, the effectiveness of the ambient vibration tests were verified.

OMA of model steel structure retrofitted with CFRP using earthquake simulator

  • Kasimzade, Azer A.;Tuhta, Sertac
    • Earthquakes and Structures
    • /
    • 제12권6호
    • /
    • pp.689-697
    • /
    • 2017
  • Nowadays, there are a great number of various structures that have been retrofitted by using different FRP Composites. Due to this, more researches need to be conducted to know more the characteristics of these structures, not only that but also a comparison among them before and after the retrofitting is needed. In this research, a model steel structure is tested using a bench-scale earthquake simulator on the shake table, using recorded micro tremor data, in order to get the dynamic behaviors. Beams of the model steel structure are then retrofitted by using CFRP composite, and then tested on the Quanser shake table by using the recorded micro tremor data. At this stage, it is needed to evaluate the dynamic behaviors of the retrofitted model steel structure. Various types of methods of OMA, such as EFDD, SSI, etc. are used to take action in the ambient responses. Having a purpose to learn more about the effects of FRP composite, experimental model analysis of both types (retrofitted and no-retrofitted models) is conducted to evaluate their dynamic behaviors. There is a provision of ambient excitation to the shake table by using recorded micro tremor ambient vibration data on ground level. Furthermore, the Enhanced Frequency Domain decomposition is used through output-only modal identification. At the end of this study, moderate correlation is obtained between mode shapes, periods and damping ratios. The aim of this research is to show and determine the effects of CFRP Composite implementation on structural responses of the model steel structure, in terms of changing its dynamical behaviors. The frequencies for model steel structure and the retrofitted model steel structure are shown to be 34.43% in average difference. Finally, it is shown that, in order to evaluate the period and rigidity of retrofitted structures, OMA might be used.

Ambient vibration based structural evaluation of reinforced concrete building model

  • Gunaydin, Murat;Adanur, Suleyman;Altunisik, Ahmet C.
    • Earthquakes and Structures
    • /
    • 제15권3호
    • /
    • pp.335-350
    • /
    • 2018
  • This paper presents numerical modelling, modal testing, finite element model updating, linear and nonlinear earthquake behavior of a reinforced concrete building model. A 1/2 geometrically scale, two-storey, reinforced concrete frame model with raft base were constructed, tested and analyzed. Modal testing on the model using ambient vibrations is performed to illustrate the dynamic characteristics experimentally. Finite element model of the structure is developed by ANSYS software and dynamic characteristics such as natural frequencies, mode shapes and damping ratios are calculated numerically. The enhanced frequency domain decomposition method and the stochastic subspace identification method are used for identifying dynamic characteristics experimentally and such values are used to update the finite element models. Different parameters of the model are calibrated using manual tuning process to minimize the differences between the numerically calculated and experimentally measured dynamic characteristics. The maximum difference between the measured and numerically calculated frequencies is reduced from 28.47% to 4.75% with the model updating. To determine the effects of the finite element model updating on the earthquake behavior, linear and nonlinear earthquake analyses are performed using 1992 Erzincan earthquake record, before and after model updating. After model updating, the maximum differences in the displacements and stresses were obtained as 29% and 25% for the linear earthquake analysis and 28% and 47% for the nonlinear earthquake analysis compared with that obtained from initial earthquake results before model updating. These differences state that finite element model updating provides a significant influence on linear and especially nonlinear earthquake behavior of buildings.

A Color Image Coding by Estimating Spectral Correlation Based on Wavelet Transform (웨이블렛 변환 기반 스펙트럴 상관성 추정에 의한 칼라 영상 부호화)

  • Kwak, No-Yoon;Jeong, Dae-Gwon;Hwang, Byong-Won
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • 제37권1호
    • /
    • pp.49-58
    • /
    • 2000
  • This paper presents a new color Image coding method which estimates color component Images from luminance image using spectral correlation m wavelet transformed domain More specifically, the wavelet transform is performed to the luminance image(Y), and then, for an efficient quad-tree division to encompass the varying block size, a cost function IS defined using high frequency coefficients generated by wavelet decomposition Next, a scale factor and an offset factor for each the block to minimize the estimation error between luminance image(Y) and R, B Images, are iteratively calculated With respect to the varying block size With associated cost function.

  • PDF

Ambient vibration testing of Berta Highway Bridge with post-tension tendons

  • Kudu, Fatma Nur;Bayraktar, Alemdar;Bakir, Pelin Gundes;Turker, Temel;Altunisik, Ahmet Can
    • Steel and Composite Structures
    • /
    • 제16권1호
    • /
    • pp.21-44
    • /
    • 2014
  • The aim of this study is to determine the dynamic characteristics of long reinforced concrete highway bridges with post-tension tendons using analytical and experimental methods. It is known that the deck length and height of bridges are affected the dynamic characteristics considerably. For this purpose, Berta Bridge constructed in deep valley, in Artvin, Turkey, is selected as an application. The Bridge has two piers with height of 109.245 m and 85.193 m, and the total length of deck is 340.0 m. Analytical and experimental studies are carried out on Berta Bridge which was built in accordance with the balanced cantilever method. Finite Element Method (FEM) and Operational Modal Analysis (OMA) which considers ambient vibration data were used in analytical and experimental studies, respectively. Finite element model of the bridge is created by using SAP2000 program to obtain analytical dynamic characteristics such as the natural frequencies and mode shapes. The ambient vibration tests are performed using Operational Modal Analysis under wind and human loads. Enhanced Frequency Domain Decomposition (EFDD) and Stochastic Subspace Identification (SSI) methods are used to obtain experimental dynamic characteristics like natural frequencies, mode shapes and damping ratios. At the end of the study, analytical and experimental dynamic characteristic are compared with each other and the finite element model of the bridge was updated considering the material properties and boundary conditions. It is emphasized that Operational Modal Analysis method based on the ambient vibrations can be used safely to determine the dynamic characteristics, to update the finite element models, and to monitor the structural health of long reinforced concrete highway bridges constructed with the balanced cantilever method.

Speech Quality Measure for VoIP Using Wavelet Based Bark Coherence Function (웨이블렛 기반 바크 코히어런스 함수를 이용한 VoIP 음질평가)

  • 박상욱;박영철;윤대희
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • 제27권4A호
    • /
    • pp.310-315
    • /
    • 2002
  • The Bark Coherence Function (BCF) defies a coherence function within perceptual domain as a new cognition module, robust to linear distortions due to the analog interface of digital mobile system. Our previous experiments have shown the superiority of BCF over current measures. In this paper, a new BCF suitable for VoIP is developed. The unproved BCF is based on the wavelet series expansion that provides good frequency resolution while keeping good time locality. The proposed Wavelet based Bark Coherence function (WBCF) is robust to variable delay often observed in packet-based telephony such as Voice over Internet Protocol (VoIP). We also show that the refinement of time synchronization after signal decomposition can improve the performance of the WBCF. The regression analysis was performed with VoIP speech data. The correlation coefficients and the standard error of estimates computed using the WBCF showed noticeable improvement over the Perceptual Speech Quality Measure (PSQM) that is recommended by ITU-T.