• Title/Summary/Keyword: Frequency Domain Approximation

Search Result 81, Processing Time 0.033 seconds

Performance of SC-FDE System in UWB Communications with Imperfect Channel Estimation

  • Wang, Yue;Dong, Xiaodai
    • Journal of Communications and Networks
    • /
    • v.9 no.4
    • /
    • pp.466-472
    • /
    • 2007
  • Single carrier block transmission with frequency domain equalization(SC-FDE) has been shown to be a promising candidate in ultra-wideband(UWB) communications. In this paper, we analyze the performance of SC-FDE over UWB communications with channel estimation error. The probability density functions of the frequency domain minimum mean-squared error(MMSE) equalizer taps are derived in closed form. The error probabilities of single carrier block transmission with frequency domain MMSE equalization under imperfect channel estimation are presented and evaluated numerically. Compared with the simulation results, our semi-analytical analysis yields fairly accurate bit error rate performance, thus validating the use of the Gaussian approximation method in the performance analysis of the SC-FDE system with channel estimation error.

Frequency Domain Analysis of Lifting Problems with Explicit Kutta Condition

  • Kim, Jong-Un;Kim, Gun-Do;Lee, Chang-Sup
    • Journal of Ship and Ocean Technology
    • /
    • v.7 no.3
    • /
    • pp.34-55
    • /
    • 2003
  • Explicit Kutta condition approximation, proved useful in existing time-domain solver of the unsteady propeller problem, requires a specified functional behavior of the vorticity in space near the trailing edge. In this paper, the strength of the discrete vortices is controlled to have a specified behavior in space in the frequency domain approach. A new formulation is introduced and is implemented for analysis of a lifting surface of a rectangular planform. Sample computations carried out according to the new formulation compares well with that of existing unsteady lifting problem in the time domain.

Direct identification of aeroelastic force coefficients using forced vibration method

  • Herry, Irpanni;Hiroshi, Katsuchi;Hitoshi, Yamada
    • Wind and Structures
    • /
    • v.35 no.5
    • /
    • pp.323-336
    • /
    • 2022
  • This study investigates the applicability of the direct identification of flutter derivatives in the time domain using Rational Function Approximation (RFA), where the extraction procedure requires either a combination of at least two wind speeds or one wind speed. In the frequency domain, flutter derivatives are identified at every wind speed. The ease of identifying flutter derivatives in the time domain creates a paradox because flutter derivative patterns sometimes change in higher-order polynomials. The first step involves a numerical study of RFA extractions for different deck shapes from existing bridges to verify the accurate wind speed combination for the extraction. The second step involves validating numerical simulation results through a wind tunnel experiment using the forced vibration method in one degree of freedom. The findings of the RFA extraction are compared to those obtained using the analytical solution. The numerical study and the wind tunnel experiment results are in good agreement. The results show that the evolution pattern of flutter derivatives determines the accuracy of the direct identification of RFA.

Evaluation of Ride Comfort in Time Domain by Using z-Transform (z변환을 이용한 시간영역에서의 승차감 평가)

  • Kim, Young-Guk;Kim, Seog-Won;Park, Chan-Kyoung;Kim, Sang-Soo;Kim, Ki-Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.6
    • /
    • pp.495-500
    • /
    • 2011
  • In evaluating the ride comfort of railway vehicles, relationship between passenger's feeling and vibration characteristics is very important because human feeling is dependent on frequency spectrum of vibration. Therefore, the weighing curves in frequency domain are used to evaluate the ride comfort of railway vehicles. These curves have been defined in the Laplace transfer functions. It is necessary to convert the Laplace weighing function to the z weighing function in order to obtain the rms value in the time domain. In the present paper, we have applied Tustin's approximation to transform the Laplace weighing function to the z weighing and validated this method by reviewing the various cases.

Natural Frequency of 2-Dimensional Heaving Circular Cylinder: Frequency-Domain Analysis (상하동요하는 2차원 원주의 고유진동수: 주파수 영역 해석)

  • Lee, Dong-Yeop;Lee, Seung-Joon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.2
    • /
    • pp.111-119
    • /
    • 2013
  • The concept of the natural frequency is useful for understanding the characters of oscillating systems. However, when a circular cylinder floating horizontally on the water surface is heaving, due to the hydrodynamic forces, the system is not governed by the equation like that of the harmonic one. In this paper, in order to shed some lights on the more correct use of the concept of the natural frequency, a problem of the heaving circular cylinder is analyzed in the frequency domain. Previously, it was thought that the theory of Ursell (1949) could not be used to get the added mass and wave-making damping for short waves, however, they were obtained by applying an accurate collocation method to the theory in this study. Using the so developed numerical method, we found the added mass and wave-making damping of the circular cylinder for the entire range of the frequency. Then, the MCFR(Modulus of Complex Frequency Response) was used to locate the frequency corresponding to the local maximum of MCFR and we define it as the natural frequency. Comparing our results with the previous investigation, we found that the pressure distribution on the cylinder gets close asymptotically to that of a cylinder in infinite fluid OR close to that of the cylinder, that the approximation of the natural frequency by Lee (2008) is different from our new value only by 0.64%, and that the approximation of the heaving system by an equivalent damped harmonic oscillation is not proper by the reason that is clearly shown from the comparison of the shape of the corresponding MCFRs.

Autotuning of A PID Controller Using a Saturation function Having a Memory

  • Oh, Seung-Rohk
    • Journal of IKEEE
    • /
    • v.11 no.4
    • /
    • pp.193-197
    • /
    • 2007
  • We use a saturation function with memory instead of a pure saturation function to generate a limit cycle in order to find one point information of a plant in the frequency domain. The saturation function with memory is useful in the presence of noise and/or a short duration of short duration of external disturbances. We analyze the error caused by the approximation that the saturation function with memory treated as a pure saturation function. We propose a new tuning formula for PID controller which can be applied a saturation function having memory with an arbitrary memory size. We show that the proposed method is more accurate than that of the approximation method via an example.

  • PDF

A New Model Approximation Using the ADP and MISE of Continuous-Time Systems (운송시간 제어계에 있어서 보조분모분수식과 MISE를 이용한 새로운모델 간략법)

  • 권오신;황형수;김성중
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.9
    • /
    • pp.660-669
    • /
    • 1987
  • Routh approximation method is the most computationally attractive. But this method may cause time-response error because this method does not match the time-response directly. In this paper a new mixed method for obtaining stable reduced-order models for high-order continuous-time systems is proposed. It makes use of the advantages of the Routh approximation method and the Minimization of Integral Squared Error(MISE) criterion approach. In this mixed method the characteristic polynomial of the reduced-order model is first obtained from that of original system by using the Auxiliary Denominator Polynomial(ADP). The numerator polynomial is then determined so as to minimize the intergral squared-error of unit step responses. The advantages of the propsed method are that the reduced models are always stable if the original system are stable and the frequency domain and time domain characteristic of the original system will be preserved in the reduced models.

  • PDF

Ritz Mode Superposition Method in Frequency Domain (주파수 영역에서의 Ritz 모드 중첩법)

  • 주관정
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1989.04a
    • /
    • pp.33-37
    • /
    • 1989
  • According to the Rayleigh-Ritz approximation method, a solution can be represented as a finite series consisting of space-dependent functions, which satisfy all the geometric boundary conditions of the problem and appropriate smoothness requirement in the interior of the domain. In this paper, an efficient formulation for solving structural dynamics systems in frequency domain is presented. A general procedure called Ritz modes (or vectors) generation algorithm is used to generate the admissible functions, i.e. Ritz modes, Then, the use of direct superposition of the Ritz modes is utilized to reduce the size of the problem in spatial dimension via geometric coordinates projection. For the reduced system, the frequency domain approach is applied. Finally, a numerical example is presented to illustrate the effectiveness of the proposed method.

  • PDF

Controller Auto-tuning Scheme Improving Feedback System Performance in Frequency Domain (주파수역에서 피드백시스템의 성능향상을 위한 제어기 Auto-turning기법)

  • 정유철;이건복
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.144-147
    • /
    • 2000
  • Controller refinement scheme to improve the performance of a conventional system automatically in frequency domain is proposed. The controller automatic tuning method features using experimental frequency responses of the conventional closed-loop system the conventional controller, and the improved closed-loop system, instead of poorly modeled plant due to non-linearities and disturbances. The improved closed-loop system characteristics is automatically acquired by the conventional closed-loop system characteristics and the proposed performance index in system bandwidth. And the proper controller is realized by least squares approximation in frequency domain. To testify the usefulness of the approach, the path tracking control of robot arm is performed. Experimental results and analytic results are well-matched.

  • PDF

Discrete-Time Controller Design using Identification of Feedback System in Frequency Domain (주파수역 피드백 시스템 인식을 이용한 이산시간 제어기 설계)

  • Jung, Yu-Chul;Shim, Young-Bok;Lee, Gun-Bok
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.99-104
    • /
    • 2001
  • Discrete-time controller design is proposed using feedback system identification in frequency domain. System Stability imposed by a new controller is checked in the function of a conventional closed-loop system, instead of a poorly modeled plant due to non-linearity and disturbance as well as unstable components, etc. The stability of the system is evaluated in view of Popov criterion. All the equations are formulated in the framework of the discrete-time system. Simulation results are shown on the plant with input saturation components, DC disturbance and a pure integration.

  • PDF