• Title/Summary/Keyword: Frequency Contribution Analysis

Search Result 220, Processing Time 0.023 seconds

Analysis of Noise Contribution using Frequency Response Function and Measurements of Noise Distribution for Railway Interior Noise (주파수 응답 함수를 이용한 철도차량 실내소음 기여도 분석 및 분포도 측정)

  • 김재철;유원희
    • Journal of KSNVE
    • /
    • v.9 no.5
    • /
    • pp.949-954
    • /
    • 1999
  • Speed-up and mass reduction of railway vehicle usually causes increased of the interior noise. One of the best ways to control the interior noise is to identify the noise level radiated from each of parts in the cabin. In this paper, we describe the method to estimate the interior noise nad evaluate the noise contribution to each of parts. This method is based that the sound pressure can be calculated by using the frequency response function and acceleration. According to analysis of the noise contribution, we validated that the noise radiated from the floor is the higher in the cabin. We also measured the noise distribution for the side and floor by using the microphone array in order to analyze the effect of the noise flowing into the cabin from the outdoors. Finally, we presented the plan of the interior noise reduction based on the noise levels radiated from each of parts.

  • PDF

Transfer Force and Contribution Analysis of Cone Crusher (콘 크러셔의 전달 하중 및 기여도 분석)

  • Kim, Dae Ji;Chung, Jintai;Lee, Ho Yeon;Lee, Chang Sun;Song, Chang Heon
    • Journal of Drive and Control
    • /
    • v.19 no.4
    • /
    • pp.77-84
    • /
    • 2022
  • The aims of this study was to estimate transfer force delivered to cone crusher housing and contribution of force transmission. The rock crushing condition caused vibrations in the cone crusher housing, which were experimentally measured, and frequency response functions (FRF) were also found through modal impact tests. Vibration data and frequency response functions were applied to the transfer path analysis (TPA) model. Next, transfer forces delivered to the cone crusher housing were quantified via the TPA method. Contribution of force transfer was also analyzed based on force estimation results. Finally, this study describes basic concepts and components of the TPA method and reviews its applicability to rotating machinery that experiences impact vibrations and forces.

Contribution Analysis on a Sub-frame of Vehicle (기여도 분석 방법을 이용한 서브프레임의 동특성 해석)

  • Kim, Chan-Jung;Lee, Bong-Hyun;Kim, Ki-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.155-158
    • /
    • 2005
  • Sub-frame is a key component to damp the vibration of engine-born and isolate the input force from a ground. To enhance the performance of the sub-frame of vehicle, its structure should be designed to be a high performing mechanical filter that exclude the low frequency vibration elements. In this paper, a contribution analysis based on the frequency response function(FRF) is introduced to detect a high sensitive position of the target sub-frame and its results are validated with a SDM(structural dynamic modification) analysis.

  • PDF

Contribution analysis of underwater radiation noise source using partial coherence function (부분상관 함수를 이용한 수중방사소음 소음원 기여도 분석)

  • Kim, Tae Hyeong;Choi, Jae Yong;Oh, Jun Seok;Kim, Seong Yong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.2
    • /
    • pp.118-124
    • /
    • 2016
  • In this paper, contribution analysis method using a partial coherence function is dealt with in the case of underwater radiation noise. When performing the contribution analysis using a partial coherence function, it is important to select the order of system input. But in the case of frequency correlated systems, it is very difficult to properly select the order of system input. In order to solve this problem, the contribution analysis is performed by subdividing the area of contribution using multiple coherence function. And the new contribution analysis method is presented by using the relationship between the contribution characteristic matrix and multiple coherence function. In order to validate the new method, calculation is performed about multi-input / single-output model which is composed of sine waves. The result of calculation shows that it is possible to derive the exact contribution values.

Noise Contribution Analysis of Pantograph Using Real Train Experiment (실차시험을 이용한 팬터그래프의 소음기여도 분석)

  • Oh, Hyuck Keun;Noh, Hee-Min;Kim, Jun-Kon;Park, Choonsoo
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.3
    • /
    • pp.271-279
    • /
    • 2016
  • Pantograph aerodynamic noise is a major cause of noise that occurs when a train is traveling at high speeds. In this study, in order to analyze the contribution of pantograph aerodynamic noise, real train tests using HEMU-430X were carried out. In order to analyze the frequency characteristic of the noise of the pantograph in an actual vehicle, a sound field visualization has been carried out using a 144-channel microphone array at train speeds of 350 and 400km/h. As a result, it was confirmed that the low frequency noise in the 250~400Hz bandwidth provides the main contribution to the pantograph noise. And, in order to estimate the noise contribution of the pantograph, the noise level difference between cases in which the pantograph is ascending and those in which it is descending were compared in single microphone experiments. The frequency analysis in the single microphone tests showed that the bands of 315~400Hz and 1000~1250Hz are the main frequency characteristics of pantograph noise. These results show quite good agreement with those of previous studies and with results of sound field visualization.

A Study on Transfer Characteristics of Vehicle Air-conditioner Booming noise (차량용 에어컨 부밍 소음의 전달 특성에 관한 연구)

  • Lim, Seung Taek;Joo, Kyung Hoon;Ahn, Hew Nam;Park, Young Duk;Kang, Yean Jun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.476-481
    • /
    • 2013
  • Transfer path analysis(TPA) and operational deflection shape(ODS) have been widely utilized to analyze the characteristics of noise. TPA enables to decompose a noise into air-borne and structure-borne noises then estimate the path contribution of noise. ODS enables to analyze a moving shape and direction of interest components at a particular frequency. In this paper, TPA and ODS are applied to transfer paths of air-conditioner booming noise in a vehicle to reduce noise level, then a fixture is mounted it's path for distributing the high portion path contribution to the low portion path contribution. Through this experiment, the reduction of sound pressure level in air-conditioner booming noise is observed. Thereafter, TPA is again employed to verify the results of contribution.

  • PDF

The Improvements of Vehicle Vibration Characteristics Using Modal Contribution (모우드 기여도 분석을 이용한 차량의 진동특성 개선)

  • 안지훈;지상현;고병식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.51-56
    • /
    • 1998
  • This paper presents modal contribution method to reduce vehicle vibration. Normal mode analysis is performed to obtain modal vector matrix. The proposed method uses this modal vector matrix to evaluate forced response of an active mode to the applied engine forces and the rotating force due to wheel unbalance mass. Comparing the responses, of the specific active mode with one another, it can be easily done to determine most contributed mode in the interesting frequency band. Then we can find dominant bushes by the strain energy distribution of the mode. Vibration response is decrease with modification of those bushes.

  • PDF

The Contribution of Spindle Parts to Static, Dynamic Stiffness and Design Improvement (공작기계 주축의 요소별 정동적 강성기여율 및 개선에 관한 연구)

  • 이찬홍;박천홍;이후상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.985-988
    • /
    • 2002
  • The Spindle-]fearing System is very important unit for geometrical accuracy in machine tools. To improve effectively the weak point of spindle system, it is necessary that the contribution ratio of spindle core parts to static and dynamic stiffness is clarified. In this paper, static contribution ratio of core parts is calculated by overlapping static deformation of basic spindle design with one flexible parts. The dynamic contribution ratio for natural frequency and dynamic deformation at spindle end is obtained by calculating correlation between original and basic spindle deformation, by curve fitting with regressive method. It is proved the validity of estimation result is correct.

  • PDF

A Study on the Squeal Noise Instability Analysis on Caliper Brake (캘리퍼 브레이크 스퀼 소음의 불안정성 해석에 관한 연구)

  • Lee, Junghwan;Kim, Seonghwan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.11
    • /
    • pp.957-965
    • /
    • 2013
  • This paper deals with analytical methods for low frequency and high frequency brake squeal noise on brake-rear caliper. In order to improve low frequency and high frequency squeal noise, we take survey caliper bracket shape parameters and housing shape parameters. Besides, using the combination of bracket and housing parameter were surveyed. Thus, using the combination of bracket Alt_05 and housing Alt_45 specifications, instability analysis and brake dynamo test were carried out. Based upon the two models, low and high frequency squeal noise of base model were improved. But, for 6.0 kHz frequency noise, which is not improved, it needs to additionally study on instability analysis and combination of the other brake components.

General evolutionary path for fundamental natural frequencies of structural vibration problems: towards optimum from below

  • Zhao, Chongbin;Steven, G.P.;Xie, Y.M.
    • Structural Engineering and Mechanics
    • /
    • v.4 no.5
    • /
    • pp.513-527
    • /
    • 1996
  • In this paper, both an approximate expression and an exact expression for the contribution factor of an element to the natural frequency of the finite element discretized system of a structure in general and a membrane in particular have been derived from the energy conservation principle and the finite element formulation of structural eigenvalue problems. The approximate expression for the contribution factor of an element is used to predict and determine the elements to be removed in an iteration since it depends only on the quantities associated with the old system in the iteration. The exact expression for the contribution factor of an element makes it possible to check whether the element is correctly removed at the end of an iteration because it depends on both the old system and the new system in the iteration. Thus, the combined use of the approximate expression and the exact expression allows a considerable number of elements to be removed in a single iteration so that the efficiency of the evolutionary structural optimization method can be greatly improved for solving the natural frequency optimization problem of a structure. A square membrane with different boundary supports has been chosen to investigate the general evolutionary path for the fundamental natural frequency of the structure. The related results indicated that if the objective of a structural optimization is to raise the fundamental natural frequency of the structure to an optimal value, the general evolutionary path during its optimization is that the elements are gradually removed along the direction from the area surrounded by the contour of the highest value to that surrounded by the contour of the lowest value.