• Title/Summary/Keyword: Frequency Change

Search Result 4,393, Processing Time 0.041 seconds

A Technique for Fast and Accurate Measurement of Power System Frequency (전력계통 주파수의 고속.정밀측정을 위한 기법)

  • Nam, S.B.;Lee, H.G.;Ma, S.B.
    • Proceedings of the KIEE Conference
    • /
    • 2004.07e
    • /
    • pp.68-71
    • /
    • 2004
  • Frequency is an important operating parameter of a power system. Electric power systems sustain transient frequency swings whenever the balance between generation and load does not no longer hold. To cope with this Constraints, it requires an accurate and high speedy frequency deviation estimation technique and suitable adjustment to obtain the power system energy balance. This paper describes the design, computational aspects and implementation of an iterative technique for measuring power system. The rate change of the phase angle is used for estimation. To confirm the validity of the proposed algorithm, the simulation studies carried out on a typical 154[KV] double T/L system by using EMTP software. Some test results are presented in the paper.

  • PDF

An Iterative Technique for Fast and Accurate Measurement of Power System Frequency (전력계통 주파수의 고속.정밀측정을 위한 반복기법)

  • Nam, S.B.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07e
    • /
    • pp.92-95
    • /
    • 2003
  • Frequency is an important operating parameter of a power system. Electric power systems sustain transient frequency swings whenever the balance between generation and load does not no longer hold. To cope with this Constraints. it requires an accurate and high speedy frequency deviation estimation technique and suitable adjustment to obtain the power system energy balance. This paper describes the design, computational aspects and implementation of an iterative technique for measuring power system. The rate change of the phase angle is used for estimation. To confirm the validity of the proposed algorithm, the simulation studies carried out on a typical 154[KV] double T/L system by using EMTP software. Some test results are presented in the paper.

  • PDF

Free Vibration Analysis of Axisymmetric Conical Shell

  • Choi, Myung-Soo;Yeo, Dong-Jun;Kondou, Takahiro
    • Journal of Power System Engineering
    • /
    • v.20 no.2
    • /
    • pp.5-16
    • /
    • 2016
  • Generally, methods using transfer techniques, like the transfer matrix method and the transfer stiffness coefficient method, find natural frequencies using the sign change of frequency determinants in searching frequency region. However, these methods may omit some natural frequencies when the initial frequency interval is large. The Sylvester-transfer stiffness coefficient method ("S-TSCM") can always obtain all natural frequencies in the searching frequency region even though the initial frequency interval is large. Because the S-TSCM obtain natural frequencies using the number of natural frequencies existing under a searching frequency. In this paper, the algorithm for the free vibration analysis of axisymmetric conical shells was formulated with S-TSCM. The effectiveness of S-TSCM was verified by comparing numerical results of S-TSCM with those of other methods when analyzing free vibration in two computational models: a truncated conical shell and a complete (not truncated) conical shell.

A Technique for Fast Measurement of Power System Frequency (전력계통 주파수의 고속측정을 위한 기법)

  • Nam, S.B.;Kim, Jin-Su;Ma, Seok-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2005.10a
    • /
    • pp.145-149
    • /
    • 2005
  • Frequency is an important operating parameter of a power system. Electric power systems sustain transient frequency swings whenever the balance between generation and load does not no longer hold. To cope with this Constraints, it requires an accurate and high speedy frequency deviation estimation technique and suitable adjustment to obtain the power system energy balance. This paper describes the design, computational aspects and implementation of an iterative technique for measuring power system. The rate change of the phase angle is used for estimation. To confirm the validity of the proposed algorithm, the simulation studies carried out on a typical 154[KV] double T/L system by using EMTP software. Some test results are presented in the paper.

  • PDF

Low frequency Instability in Hybrid Rocket Post-chamber Configuration (연소실 형상 변화에 의한 하이브리드 로켓의 저주파수 연소불안정)

  • Park, Kyungsu;Lee, Changjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.1
    • /
    • pp.29-36
    • /
    • 2014
  • Hybrid rocket displays many different low frequency pressure oscillations during combustion. Thermal lag between solid and gas phase is the primary mechanism to trigger low frequency pressure oscillations of around 10Hz, and Helmholtz or $L^*$ mode also produces other types of low frequency oscillations above 10 Hz which is associated with the change in combustion volume. Since the flow characteristics in hybrid rocket is very similar to those in solid rocket combustion, it is not surprising to observe similar pressure oscillation behaviors. Experimental test shows that combustion pressure suddenly turns into to a big amplitude oscillation around 10Hz then followed by returning to an original pressure level after a short period combustion. Further investigations show that this instability is independent of the change in O/F ratio at all. One of the possible candidates is the vortex shedding dynamics over the backward step in the post combustion chamber. It is required to investigate the low frequency oscillation mechanism in the future study.

Dynamic Droop-based Inertial Control of a Wind Power Plant

  • Hwang, Min;Chun, Yeong-Han;Park, Jung-Wook;Kang, Yong Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1363-1369
    • /
    • 2015
  • The frequency of a power system should be maintained within the allowed limits for stable operation. When a disturbance such as generator tripping occurs in a power system, the frequency is recovered to the nominal value through the inertial, primary, and secondary responses of the operating synchronous generators (SGs). However, for a power system with high wind penetration, the system inertia will decrease significantly because wind generators (WGs) are operating decoupled from the power system. This paper proposes a dynamic droop-based inertial control for a WG. The proposed inertial control determines the dynamic droop depending on the rate of change of frequency (ROCOF). At the initial period of a disturbance, where the ROCOF is large, the droop is set to be small to release a large amount of the kinetic energy (KE) and thus the frequency nadir can be increased significantly. However, as times goes on, the ROCOF will decrease and thus the droop is set to be large to prevent over-deceleration of the rotor speed of a WG. The performance of the proposed inertial control was investigated in a model system, which includes a 200 MW wind power plant (WPP) and five SGs using an EMTP-RV simulator. The test results indicate that the proposed scheme improves the frequency nadir significantly by releasing a large amount of the KE during the initial period of a disturbance.

Analysis of the Frequency for Cable of Cable-Stayed Bridges to Temperature Variation (온도변화에 따른 사장교 케이블 고유진동수 분석)

  • Lee, Hyun-Chol;Kim, Jin-Soo;Park, Kyoung-Ho;Lee, Jong-Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.2
    • /
    • pp.23-34
    • /
    • 2021
  • Cable was targeted for cable, which is a main material of cable-stayed bridges that have high frequency of use at home and abroad and many future construction plans. First of all, experiments were conducted on temperature loads that were permanently used due to changes in temperature of cables and changes in air temperature, taking into account changes in normal fat. The dynamic characteristics of cables were compared and analyzed by applying various systems to change dynamic characteristics by applying temperature change of cables. Comparing and analyzing the dynamic characteristics of cables, the acceleration, frequency and tension of cables due to temperature rise tended to decrease, the degree of influence of displacement of cables was analyzed, and the results of the mode characteristics of cables were analyzed. In particular, the correlation of cable acceleration, natural frequency, and tension due to changes in cable temperature showed that the cable tension is highly sensitive to acceleration and natural frequency.

A Study on Vibration Analysis During the Slab Dismantling Using the Mechanical Dismantling Method (기계식 해체 공법을 적용한 슬래브 해체 시 발생하는 진동 해석 연구)

  • Noh, You-Song;Suk, Chul-Gi;Park, Hoon
    • Explosives and Blasting
    • /
    • v.39 no.4
    • /
    • pp.1-11
    • /
    • 2021
  • In this study, the vibration data were obtained to analyze the vibration generated during dismantling of slab using the mechanical dismantling method. The obtained vibration data were classified according to the attachment device and then the waveform and dominant frequency analysis were performed. And the correlation was analyzed by the different methods of measuring the distance between the work section and the measurement point. As a result of the waveform analysis for each attachment device, there was little change in the phase of the vibration waveform and only the change in amplitude, which is the magnitude of the vibration velocity. And as a result of frequency analysis, the frequency band was lower when using a crusher method than a braker method and frequency band were close of the natural frequency of the structure to be dismantled. As a result of the correlation analysis, the separation distance was estimated a higher correlation when evaluated as the path through which the vibration propagates along the structure frame than the straight distance between the measurement point and the working section.

A Study on the Estimation Technique of Frequency in the Power System using FIR Filter (FIR 필터를 이용한 전력계통 주파수 추정기법에 관한 연구)

  • Nam, S.B.;Lee, H.G.;Park, C.W.;Shin, M.C.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07e
    • /
    • pp.80-85
    • /
    • 2001
  • Frequency is an important operating parameter of a power system. Frequency of a power system remains constant if sum of all the loads plus losses equals total generation in the system. However, the frequency starts to decrease if total generation is less than the sum of loads and tosses. On the other hand, the system frequency increases if total generation exceeds the sum of loads and losses. Electric power systems sustain transient frequency swings whenever the balance between generation and load does not no longer hold. To cope with this Constraints, it requires an accurate and high speedy frequency deviation estimation technique and suitable adjustment to obtain the power system energy balance. The fundamental frequency component of 3-phase signal is first extracted by using an algorithm based on FIR(finite duration impulse response) filter, a phase angle of a voltage. The rate change of the phase angle is used for estimation and speed in its process. Also, to confirm the validity of the proposed algorithm, the simulation results obtained by using EMTP(electro magnetic transients program) are shown.

  • PDF

THE DEVELOPMENT OF INTERPRETATION FOR TEMPOROMANDIBULAR JOINT ROENTGENOGRAMS (악관절증 환자의 X선사진 판독법 개발에 관한 연구)

  • You Dong-Soo;Ahn Hyung-Kyu;Park Tae-Won
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.14 no.1
    • /
    • pp.121-134
    • /
    • 1984
  • The authors analyzed the morphological change of bone structure from 3,140 radiographs (1570 joints) of 785 patients with temporomandibular joint arthrosis, which were obtained by the oblique lateral transcranial projection and orthopantomographs. The interrelation of bone change and clinical symptoms, duration of the diseases were examined. Also, the bone changes of articular eminence, condyle, articular fossa were examined according to positional change of the condyle in the mouth open and close state. The results were as follows. 1. In the 785 patients with TMJ arthrosis, 782 patients (99.62%) show the positional change of the condyle. Among them 691 patients (88.03%) show the bone change. 2. In TMJ arthrosis patients with bone changes 451 patients (65.27%) showed both the condylar positional changes and bone changes bilaterally. 198 patients (28.65%) show the condylar positional changes bilaterally and bone changes unilaterally. 3. The bone changes in the TMJ arthrosis were in order of frequency eburnation (647 cases, 32.8%), erosion (548 cases, 27.79%), flattening (418 cases, 21.20%), deformity (138 cases, 6.99%). sclerosis (115 cases, 5.83%), marginal proliferation (106 cases, 5.38%). The region of bone change in TMJ arthrosis with condylar positional changes were in order of frequency the articular eminence (43.97%) condylar head (38.64%), articular fossa (17.39%). In the patients with bone changes, their clinical symptoms were pain (44.34%), clicking sound (33.5%), limitation of mouth opening (22.52%). In the patients complaining pain the most frequent bone change was erosion (28.60%), in the patients complaining clicking sound, eburnation (28.97%) in the patients complaining the limitation, eburnation (29.40%). Also in the patients with the duration below 1 year most common bone change was eburnation. 5. The most common condylar positional change was downward position (39.94%) in closed state, restricted movement of condyle (30.07%) in open state. The condylar positional changes and bone changes according to the region were as follows: a) In the condylar head the most frequent bone change was erosion (30.45%) and the most frequent condylar positional change was downward position (37.40%) in closed state, restricted movement of condyle (33.2%) in open state. b) In the articular eminence the most frequent bone change was eburnation (39.91%) and the most frequent condylar positional change was downward position (39.79%) in closed state, restricted movement of condyle (27.22%) in open state. c) In the articular fossa the most frequent bone change was eburnation (53.94%) and the most frequent condylar positional change was downward position (42.57%) in closed state, restricted movement of condyle (30.32%) in open state.

  • PDF