• Title/Summary/Keyword: Frequency

Search Result 66,280, Processing Time 0.064 seconds

A 166MHz Phase-locked Loop-based Frequency Synthesizer (166MHz 위상 고정 루프 기반 주파수 합성기)

  • Minjun, Cho;Changmin, Song;Young-Chan, Jang
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.714-721
    • /
    • 2022
  • A phase-locked loop (PLL)-based frequency synthesizer is proposed for a system on a chip (SoC) using multi-frequency clock signals. The proposed PLL-based frequency synthesizer consists of a charge pump PLL which is implemented by a phase frequency detector (PFD), a charge pump (CP), a loop filter, a voltage controlled oscillator (VCO), and a frequency divider, and an edge combiner. The PLL outputs a 12-phase clock by a VCO using six differential delay cells. The edge combiner synthesizes the frequency of the output clock through edge combining and frequency division of the 12-phase output clock of the PLL. The proposed PLL-based frequency synthesizer is designed using a 55-nm CMOS process with a 1.2-V supply voltage. It outputs three clocks with frequencies of 166 MHz, 83 MHz and 124.5MHz for a reference clock with a frequency of 20.75 MHz.

Joint Phase and Frequency Offset Estimator for Short Burst MPSK Transmission with Preamble

  • Kim Seung-Geun;Lim Young-Kon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.4E
    • /
    • pp.152-157
    • /
    • 2005
  • In this paper, a new data-aided joint phase and frequency estimator, which has very low computational complexity, is proposed and its variances of phase and frequency estimates are derived. To estimate the phase and frequency offset, first of all, the overall observation interval is divided into same length sub-intervals, and then phase estimates are independently computed based on symbols of the each sub-intervals. To be continue the sequence of computed phase estimates, proper integer multiples of $2{\pi}$ are added to (or subtracted from) the computed phase estimates, which is called linearized phase estimate. The phase offset of the proposed joint estimator is estimated by averaging the linearized phase estimates and the frequency offset by averaging the differences between consecutive linearized phase estimates. The variance of the proposed phase offset estimate is same to MCRB of phase if there is no frequency offset, but it is smaller than MCRB of phase if there is frequency offset. However, the variance of the proposed frequency offset estimate is bigger by at least 0.5 dB than MCRB of frequency with the same observation interval.

Frequency-dependent grounding impedance of the counterpoise based on the dispersed currents

  • Choi, Jong-Hyuk;Lee, Bok-Hee;Paek, Seung-Kwon
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.589-595
    • /
    • 2012
  • When surges and electromagnetic pulses from lightning or power conversion devices are considered, it is desirable to evaluate grounding system performance as grounding impedance. In the case of large-sized grounding electrodes or long counterpoises, the grounding impedance is increased with increasing the frequency of injected current. The grounding impedance is increased by the inductance of grounding electrodes. This paper presents the measured results of frequency-dependent grounding impedance and impedance phase as a function of the length of counterpoises. In order to analyze the frequency-dependent grounding impedance of the counterpoises, the frequency-dependent current dissipation rates were measured and simulated by the distributed parameter circuit model reflecting the frequency-dependent relative resistivity and permittivity of soil. As a result, the ground current dissipation rate is proportional to the soil resistivity near the counterpoises in a low frequency. On the other hand, the ground current dissipation near the injection point is increased as the frequency of injected current increases. Since the high frequency ground current cannot reach the far end of long counterpoise, the grounding impedance of long counterpoise approaches that of the short one in the high frequency. The results obtained from this work could be applied in design of grounding systems.

An Improved Joint Detection of Frame, Integer Frequency Offset, and Spectral Inversion for Digital Radio Mondiale Plus

  • Kim, Seong-Jun;Park, Kyung-Won;Lee, Kyung-Taek;Choi, Hyung-Jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.2
    • /
    • pp.601-617
    • /
    • 2014
  • In digital radio broadcasting systems, long delays are incurred in service start time when tuning to a particular frequency because several synchronization steps, such as symbol timing synchronization, frame synchronization, and carrier frequency offset and sampling frequency offset compensation are necessary. Therefore, the operation of the synchronization blocks causes delays ranging from several hundred milliseconds to a few seconds until the start of the radio service after frequency tuning. Furthermore, if spectrum inversed signals are transmitted in digital radio broadcasting systems, the receivers are unable to decode them, even though most receivers can demodulate the spectral inversed signals in analog radio broadcasting systems. Accordingly, fast synchronization techniques and a method for spectral inversion detection are required in digital radio broadcasting systems that are to replace the analog radio systems. This paper presents a joint detection method of frame, integer carrier frequency offset, and spectrum inversion for DRM Plus digital broadcasting systems. The proposed scheme can detect the frame and determine whether the signal is normal or spectral inversed without any carrier frequency offset and sampling frequency offset compensation, enabling fast frame synchronization. The proposed method shows outstanding performance in environments where symbol timing offsets and sampling frequency offsets exist.

Series Load Resonant Soft-Switching PWM High Frequency Inverter with Auxiliary Active Edge-Resonant Snubber

  • Saha, Bishwajit;Kim, Hun-Ho;Han, Ho-Dong;Kwon, Soon-Kurl;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.278-280
    • /
    • 2006
  • In this paper, a novel type of auxiliary active snubbingcircuit assisted quasi-resonant soft-switching pulse width modulation inverter is proposed for consumer induction heating equipments. The operation principle of this high frequency inverter is described using switching modes and equivalent circuits. This newly developed series resonant high frequency inverter can regulate its high frequency output AC power under a principle of constant frequency active edge resonant soft- switching commutation by asymmetrical PWM control system. The high frequency power regulation and actual power conversion efficiency characteristics of consumer induction heating (IH) products using the proposed soft-switching pulse width modulation (PWM) series load resonant high frequency inverter evaluated. The practical effectiveness and operating performance of high frequency inverter are discussion on the basis of simulation and experimental results as compared with the conventional soft-switching high frequency inverter.

  • PDF

Investigating Natural Frequency Analysis and Measurement of Railway Vehicle to Avoid Resonance (공진회피를 위한 철도차량의 고유진동수 해석 및 측정에 관한 연구)

  • Hong, Do-Kwan;Jeong, Jae-Boo;Jung, Seung-Wook;Kim, Gyeong-Bae;Ahn, Chan-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.8
    • /
    • pp.713-719
    • /
    • 2012
  • This paper deals with the natural frequency analysis and two experiments to evaluate first twisting and bending natural frequency of railway vehicle. The KS R 9228 testing method is generally performed as pseudo FRF(frequency response function) which is widely used by two accelerometers. The exciting method is utilized using the load weight(1 ton release). The modal testing is used to verify KS R 9228 testing result and the natural frequency analysis result. The first twisting and bending natural frequency should be above 10 Hz by resonance which is mostly generated between bogie and vehicle frame exciting low frequency. The first twisting and bending natural frequency of railway vehicle are successfully verified between analysis and test.

Single Phase Utility Frequency AC-High Frequency AC Matrix Converter Using One-Chip Reverse Blocking IGBTs based Bidirectional Switches

  • Hisayuki, Sugimura;Kwon, Soon-Kurl;Lee, Hyun-Woo;Mutsuo, Nakaoka
    • Proceedings of the KIEE Conference
    • /
    • 2006.10d
    • /
    • pp.125-128
    • /
    • 2006
  • This paper presents a novel type soft switching PWM power frequency AC-AC converter using bidirectional active switches or single phase utility frequency AC-high frequency AC matrix converter. This converter can directly convert utility frequency AC (UFAC, 50Hz/60Hz) power to high frequency AC (HFAC) power ranging more than 20kHz up to 100kHz. A novel soft switching PWM prototype of high frequency multi-resonant PWM controlled UFAC-HFAC matrix converter using antiparallel one-chip reverse blocking IGBTs manufactured by IXYS corp. is based on the soft switching resonance with asymmetrical duty cycle PWM strategy. This single phase UFAC-HFAC matrix converter has some remarkable features as electrolytic capacitor DC busline linkless topology, unity power factor correction and sine-wave line current shaping, simple configuration with minimum circuit components, high efficiency and downsizing. This series load resonant UFAC-HFAC matrix converter, incorporating bidirectional active power switches is developed and implemented for high efficiency consumer induction heated food cooking appliances in home uses and business-uses. Its operating performances as soft switching operating ranges and high frequency effective power regulation characteristics are illustrated and discussed on the basis of simulation and experimental results.

  • PDF

Analysis of Frequency Characteristics of Writing Instruments Due to Friction (필기구 마찰의 주파수 특성 분석)

  • Shin, JaeUn;Park, JinHwak;Lee, YoungZe
    • Tribology and Lubricants
    • /
    • v.33 no.4
    • /
    • pp.148-152
    • /
    • 2017
  • The feel of writing is important to customers when they buy smart devices with stylus such as smartphones and tablet computers. With an aim to reproduce the tactile sensibility of writing instruments when people write on the glass display using a stylus, this study focuses on the frequency characteristics of writing instruments that can describe the vibrations of writing instruments sliding over counter surfaces. In addition, this study includes the effect of various factors influencing the friction of writing instruments such as lubricant, nib material, and contact type. We perform sliding experiments with six types of writing instruments and a sheet of paper to understand the relation between the friction conditions of the nib and the frequency characteristics. As this research focuses on the tactile perception of human skin when people use a writing instrument, the analysis of frequency characteristics is performed in the perceptible frequency range of mechanoreceptors in the human skin. As a result, three types of frequency characteristics are identified. Low frequency peaks are observed for a metal nib with ink; high frequency peaks are observed for a nib without ink; and, middle frequency peaks with a wide range of distribution occurs for fabric nibs with ink. Therefore, to implement the proper feel of writing, at least three types of vibrations have to be made.

Limiting CPU Frequency Scaling Considering Main Memory Accesses (주메모리 접근을 고려한 CPU 주파수 조정 제한)

  • Park, Moonju
    • KIISE Transactions on Computing Practices
    • /
    • v.20 no.9
    • /
    • pp.483-491
    • /
    • 2014
  • Contemporary computer systems exploits DVFS (Dynamic Voltage/Frequency Scaling) technology for balancing performance and power consumption. The efficiency of DVFS depends on how much performance we get for larger power consumption due to elevated CPU frequency. Especially for memory-bounded applications, higher CPU frequency often does not result in higher performance. In this paper, we present an upper bound of CPU frequency scaling based on memory accesses. It is observed that the performance gain due to higher CPU frequency is limited by memory accesses (last level cache misses) per instructions by experiments. Using the results, we present the CPU frequency upper bound with little performance gain. Experimental results show that for a memory-bounded application, applying the frequency upper bound enhances the energy efficiency of the application by above 30%.

A Study on the Optimal Trading Frequency Pattern and Forecasting Timing in Real Time Stock Trading Using Deep Learning: Focused on KOSDAQ (딥러닝을 활용한 실시간 주식거래에서의 매매 빈도 패턴과 예측 시점에 관한 연구: KOSDAQ 시장을 중심으로)

  • Song, Hyun-Jung;Lee, Suk-Jun
    • The Journal of Information Systems
    • /
    • v.27 no.3
    • /
    • pp.123-140
    • /
    • 2018
  • Purpose The purpose of this study is to explore the optimal trading frequency which is useful for stock price prediction by using deep learning for charting image data. We also want to identify the appropriate time for accurate forecasting of stock price when performing pattern analysis. Design/methodology/approach In order to find the optimal trading frequency patterns and forecast timings, this study is performed as follows. First, stock price data is collected using OpenAPI provided by Daishin Securities, and candle chart images are created by data frequency and forecasting time. Second, the patterns are generated by the charting images and the learning is performed using the CNN. Finally, we find the optimal trading frequency patterns and forecasting timings. Findings According to the experiment results, this study confirmed that when the 10 minute frequency data is judged to be a decline pattern at previous 1 tick, the accuracy of predicting the market frequency pattern at which the market decreasing is 76%, which is determined by the optimal frequency pattern. In addition, we confirmed that forecasting of the sales frequency pattern at previous 1 tick shows higher accuracy than previous 2 tick and 3 tick.