• Title/Summary/Keyword: Freight wheel

Search Result 27, Processing Time 0.025 seconds

Running Safety of High Speed Freight Bogie (고속주행용 화차 대차의 주행안전성)

  • 이승일;최연선
    • Proceedings of the KSR Conference
    • /
    • 2001.10a
    • /
    • pp.179-186
    • /
    • 2001
  • As the freight traffic becomes heavier, the high speed of existing freight cars is essential instead of the construction of a new railway. The high speed can be achieved by the design modifications of the freight bogie. In this paper, an analytical model of freight bogie including the lateral force between rail and the flange of wheel is developed to decide the critical speed, which activates a hunting motion and tells the running safety of freight bogie. The dynamic responses of the analytical model were compared with an experimental data from a running test of a freight bogie and showed good agreements between them. The analytical model is used to find the design modifications of the freight bogie by parameter studies. The results show that the reduction of wheelset mass ratio and the increase of the axle distance of the freight bogie can increase the critical speed, but the primary lateral stiffness has little effects on the critical speed. And this also study shows that smaller wheel conicity deteriorates the running safety of the freight car, which means the overhauling of the wheel of freight bogie should be done regularly.

  • PDF

Running Safety of High Speed Freight Bogie (고속주행용 화차대차의 주행안전성)

  • 이승일;최연선
    • Journal of the Korean Society for Railway
    • /
    • v.4 no.3
    • /
    • pp.116-122
    • /
    • 2001
  • As freight traffic becomes heavier, the high speed of existing freight cars is essential, instead of the construction of a new railway. The high speed can be achieved by the modifications of freight bogie design. In this paper, an analytical model of freight bogie is developed to decide the critical speed. The dynamic responses of the analytical model are compared with the experimental data from a running test of freight bogie and showed good agreements between them. The analytical model is used to find the design of freight bogie. The parameter studies show that the reduction of wheelset mass ratio and the increase of the axle distance of freight bogie can increase the critical speed, but the primary lateral stiffness has little effects on the critical speed. And this study also shows that smaller wheel conicity deteriorates the running safety of freight car, which means that the overhauling of the wheel of freight bogie should be done regularly.

  • PDF

Measuring and analyzing the hardness of wheel tread based on the mileage of freight car (화차 주행거리에 따른 차륜답면 경도측정 분석)

  • So, Jin-Sub;Lim, Jae-Kyun;Lee, Dae-Gyu;Nahm, Gi-Don;Kim, Ju-Won;Choi, Hyeong-Su;Whang, Sang-Ju;Yun, Cha-Jung
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1642-1645
    • /
    • 2008
  • It is said that the effect in wheels of freight car varies with the type of freight, the condition of operation, the braking device, and the type of bogie. The hardness of open wagon, gondola car, propylene car, covered freight car, container car and hopper car has been measured according to the mileage through this research. As a result, the wheel with more mileages after shaving off the wheel tread has a higher hardness than the others in the case of same type of car.

  • PDF

Evaluation of Residual Stress for Freight Car Wheel due to Wear and Brake Application (마모와 제동에 의한 화차륜의 잔류응력 변화)

  • Kwon, Seok Jin;Seo, Jung Won;Kim, Min Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.7
    • /
    • pp.529-534
    • /
    • 2016
  • During the past few years, several incidents of freight car wheel failure during operation have occurred due to fatigue crack and overheating from braking. Tensile residual stress on the wheel tread creates an environment conducive to the formation of thermal cracks that may threaten the safety of train operations. It is important to investigate the residual stress on wheels in order to prevent derailment. In the present paper, the residual stress on wheels is measured using the x-ray diffraction system and the residual stress is analyzed using FEM. The result shows that the residual stress on the wheel rim is lower than that on the wheel tread center and the stress on over-braked wheels changes from compression residual stress to tensile residual stress.

The Derailment Safety Estimation of DMT Freight for Real Track Condition (실제 선로조건에 따른 DMT 화차의 탈선안전도 평가)

  • Son, Myoung-Sun;Eom, Beom-Gyu;Lee, Hi-Sung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.7
    • /
    • pp.637-642
    • /
    • 2011
  • The DMT freight is judged that economic performance is good because can increase cargoes than existing freight. However, the existing freight cars, each with a different balance to the body structure is bogie because the vibrations may occur. Thus, by minimizing vibration over the existing freight securing the safety of the driving if you will not have major problems in cargoes. In this study, multi-body dynamic analysis tool, VI-Rail using the actually Gyeongbu Railroad line and an empty, full freight condition include curve radius, track irregularity, The DMT freight of the derailed wagons were assessed for safety analysis. Full and empty freight conditions for parity in the Gyeongbu Railroad line(Dongdaegoo${\leftrightarrow}$Kyungsan) derailment safety analysis, such as derailment coefficient and the wheel unloaded, echoing the curve and the orbit is affected by the irregularity was found. Full freight condition than the empty conditions showed a significant derailment safety. Overall, the limits of derailment coefficient(Q/P = 0.8) and wheel unload decrement limits(${\triangle}P/P$ = 0.6) is less safe with me confirmed that the derailment safety.

Residual Stress of Wheel Tread for Freight Car (화차용 차륜답면의 잔류음력 분포)

  • Kwon, Seok-Jin;Seo, Jung-Won;Lee, Dong-Hyung;So, Jin-Ub;Park, Sung-Kyu;Choi, Hyung-Su
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1598-1603
    • /
    • 2009
  • Recently, several wheel for freight car in running had experienced the wheel failure due to fatigue crack, overheat braking and other factors. Severe heating of the wheel during tread braking was believed to be a contributing factor of derailment. It is necessary to evaluate the residual stress in wheel tread. In the present paper, the residual stress of wheel using x-ray diffraction system is investigated. the result shows that the residual stress of wheel is depend on the running distance and wear rate of wheel.

  • PDF

The Derailment Safety Estimation of DMT Freight for Real Track Condition (실제 선로조건에 따른 DMT 화차의 탈선안전도 평가)

  • Lee, Jong-Seong;Eom, Beom-Gyu;Lee, Seung-Il;Lee, Hi-Sung
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.830-835
    • /
    • 2011
  • DMT Freight is judged that economic performance is good because can increase cargoes than existing freight. However, the existing freight cars, each with a different balance to the body structure is bogie because the vibrations may occur. Thus, by minimizing vibration over the existing freight securing the safety of the driving if you will not have major problems in cargoes. In this study, multi-body dynamic analysis tool, VI-Rail using the actually Gyeongbu Railroad line and an empty, full freight condition include curve radius, track irregularity, cent. DMT freight of the derailed wagons were assessed for safety analysis. Full and empty freight conditions for parity in the Gyeongbu Railroad line(Dongdaegoo ${\leftrightarrow}$Gyungsan) derailment safety analysis, such as derailment safety coefficient and the radius wheel road decrement, echoing the curve and the orbit is affected by the irregularity was found. Full freight condition than the empty conditions showed a significant derailment safety. Overall, the limits of derailment coefficient (Q/P=0.8) and wheel road decrement limits (${\Delta}P/P=0.6$) is less safe with me confirmed that the derailment safety.

  • PDF

Effect of the Brake Shoe on the Brake Force of the Freight Car (화차용 브레이크 슈의 제동에 미치는 영향)

  • 최경진;이동형
    • Proceedings of the KSR Conference
    • /
    • 2001.10a
    • /
    • pp.125-130
    • /
    • 2001
  • It is vary importance that stopping distance for the freight train and need to design parameter of the brake force and friction coefficient. Acoording to the brake force between shoe and wheel less than the adhesion between wheel and rail. Because of vary difference between empty and weight car of 0∼500kN, this solution was made to application for variable loaded brake system. When the V=110km/h. the emergency stopping distance of freight train is about 700m, so this study was considered on the two condition, one of the increse brake force and to be different of the increse friction coefficient on the brake shoe. It was useful increse friction coefficient. Result of study, analyze effect of the brake shoe on the brake force of the freight car and high friction coefficient were proposed. To do this, ${\mu}$=0.155${\pm}$10% when S=600m on the V=110km/h of the train, 2 groove of friction surface on the temperature distribution were considered.

  • PDF

A Study on Safety Estimation of Railroad Wheel (컨테이너 철도차륜의 안전성 평가에 관한 연구)

  • Lee, Dong-Woo;Kim, Jin-Nam;Cho, Seok-Swoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.4
    • /
    • pp.1178-1185
    • /
    • 2010
  • Recently, high speed of container freight cars is causing fatigue damage of wheel. Sudden failure accidents cause a lot of physical and human damages. Therefore, damage analysis for wheel prevents failure accident of container freight car. Wheel receives mechanical and thermal loads at the same time while rolling stocks are run. The mechanical loads applied to wheel are classified by the horizontal load from contact of wheel and rail in curve line section and by the vertical force from rolling stocks weight. Also, braking and deceleration of rolling stocks cause repeated thermal load by wheel tread braking. Specially, braking of rolling stocks is frictional braking method that brake shoe is contacted in wheel tread by high breaking pressure. Frictional heat energy occurs on the contact surface between wheel tread and brake shoe. This braking converts kinetic energy of rolling stocks into heat energy by friction. This raises temperature rapidly and generates thermal loads in wheel and brake shoe. There mechanical and thermal loads generate crack and residual stress in wheel. Wetenkamp estimated temperature distribution of brake shoe experimentally. Donzella proposed fatigue life using thermal stress and residual stress. However, the load applied to wheel in aforementioned most researches considered thermal load and mechanical vertical load. Exact horizontal load is not considered as the load applied to wheel. Therefore, above-mentioned loading methods could not be applied to estimate actual stress applied to wheel. Therefore, this study proposed safety estimation on wheel of freight car using heat-structural coupled analysis on the basis of loading condition and stress intensity factor.

A Study Vibration Characteristic of Railway Freight Car's End Beam for Taebaek Line (태백선을 주행하는 화차 엔드빔의 진동특성에 관한 연구)

  • 함영삼;문경호;홍재성;이동형;서정원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.378-383
    • /
    • 2004
  • Bogie is the connection device between carbody and wheel. It is the core part that exert a important effect on the passenger safety and running safety. Bogie largely consist of bogie frame, suspension, brake, wheel set. Static and Dynamic load have acted on it complexly. So when the bogie is designed, finite element method, static load test, fatigue test running test should be considered. Some bogie frame of high speed railway freight car have the problem. It's end beam was cracked. The crack of the end beam have a bad effect on brake system. ROTEM co. made an improved end beam and applied one set to freight car. this report showed the vibration characteristic which was compared conventional bogie to improved bogie for running safety.

  • PDF