• Title/Summary/Keyword: Freezing and thawing test

Search Result 298, Processing Time 0.036 seconds

Effects of Thawing-Fermentation Condition of Frozen Dough on frozen Bread Quality (냉동생지의 해동.발효조건이 냉동 빵의 품질에 미치는 영향)

  • 김교창;장성규;도대홍
    • The Korean Journal of Food And Nutrition
    • /
    • v.10 no.3
    • /
    • pp.287-294
    • /
    • 1997
  • When bread making, the condition of thawing-fermentation for frozen dough were tested in variable temperature, and measured thawing-fermentation time and volume of frozen dough. L-Ascorbic acid (L-Aa) was added in frozen dough for the comparison test of develop volume in bread staling degree of baking bread were measured additive frozen dough which was stoppages in freezing, staling degrees were tested hardness with Rheometer. The test for comparison of thawing-fermentation time in variable temperature was shown the condition of dough conditioner at 3$0^{\circ}C$ was most effective for bread making, Because That condition was required very short time(74 min) But, in this comparison of volume in final products was shown the products in the condition of thawing-fermentation at 3$0^{\circ}C$ was smaller than the products at 5$^{\circ}C$(418 ml). The baking volume of L-Aa additive frozen dough which has under gone thawing-fermentation at 3$0^{\circ}C$, were shown baking volume of 420 ml in 2 weeks storage terms to 100 mg/kg L-Aa additive dough and shown baking volume of 454 ml in 4 weeks storage terms to dough of 200 mg/kg additive weight. Staling degrees of L-Aa additive frozen bread were measured with Rheometer. The hardness of 100 mg/kg L-Aa additive frozen bread was sown low level hardness in 1~2 weeks freezing term, 150 mg/kg L-Aa additive frozen bread was shown low level hardness in 3 weeks freezing term. In 4 weeks freezing term, 200 mg/kg L-Aa additive frozen bread was shown low level hardness compared with non-additive L-Aa frozen bread. In comparison of frozen bread quality, non-additive L-Aa products was better than additive L-Aa products in equality of baking shape and external apparence. But in total quality in external and internal apparence, additive L-Aa products was better than non-additive L-Aa products.

  • PDF

Does conventional freezing affect sperm DNA fragmentation?

  • Le, Minh Tam;Nguyen, Thai Thanh Thi;Nguyen, Tung Thanh;Nguyen, Trung Van;Nguyen, Tam An Thi;Nguyen, Quoc Huy Vu;Cao, Thanh Ngoc
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.46 no.2
    • /
    • pp.67-75
    • /
    • 2019
  • Objective: Sperm cryopreservation has been widely used in assisted reproductive technology, as it offers great potential for the treatment of some types of male infertility. However, cryopreservation may result in changes in membrane lipid composition and acrosome status, as well as reductions in sperm motility and viability. This study aimed to evaluate sperm DNA fragmentation damage caused by conventional freezing using the sperm chromatin dispersion test. Methods: In total, 120 fresh human semen samples were frozen by conventional methods, using SpermFreeze Solution as a cryoprotectant. Routine semen analysis and a Halosperm test (using the Halosperm kit) were performed on each sample before freezing and after thawing. Semen parameters and sperm DNA fragmentation were compared between these groups. Results: There was a significant decrease in sperm progressive motility, viability, and normal morphology after conventional freezing (32.78%, 79.58%, and 3.87% vs. 16%, 55.99%, and 2.55%, respectively). The sperm head, midpiece, and tail defect rate increased slightly after freezing. Furthermore, the DNA fragmentation index (DFI) was significantly higher after thawing than before freezing (19.21% prior to freezing vs. 22.23% after thawing). Significant increases in the DFI after cryopreservation were observed in samples with both normal and abnormal motility and morphology, as well as in those with normal viability. Conclusion: Conventional freezing seems to damage some sperm parameters, in particular causing a reduction in sperm DNA integrity.

The Experimental Study on the Durability of Concrete under Freezing & Thawing Action and Salt attack (염해와 동해를 받는 콘크리트의 내구성 평가실험)

  • Lee, Joan-Gu;Park, Kwang-Su;Cho, Young-Kwon;Kim, Meyong-Won;Kim, Kwan-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.213-216
    • /
    • 2005
  • Salt attack and freezing & thawing test, one of the combined deterioration tests was performed to explore the mechanism of concrete structure deterioration under marine environment. Simple submerging test was proceeded to draw out its diffusion factor with salt water at the same time. Some of the mechanisms were driven with using three types of cements and four kinds of salt water concentrations. $\circ$ TBC was more durable than OPC or SRC for freezing and thawing action $\circ$ The higher chloride concentration of salt water was, the faster relative dynamic elastic modulus decreased and the higher the loss of weight was. $\circ$ The diffusion factor of TBC was smaller than those of TBC or SRC at simple submergence of concrete specimens into salt water.

  • PDF

Slope Stability Analysis according to Repeated Freezing and Thawing of the Soil (토질의 동결 융해 반복에 따른 사면의 안정성에 관한 연구)

  • Shin, Eun Chul;Shin, Hui Su;Gyu, Jung Cheol
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.3
    • /
    • pp.43-51
    • /
    • 2015
  • In seasonal frozen areas which have a temperature difference in the winter and spring season like south korea, if stiffness reduction by repeated freezing and thawing occurs to slopes adjacent to private facilities or mountain slopes, safety factor is insufficient to design criteria and landslide could be occurs due to rainfall or snowfall. It can lead to large damage of human life and property. In this study, in order to examine the safety changes of mountain slopes by repeated freezing and thawing, soil samples series of SP and SM by USCS distributed in surface soil of mountain slopes were collected for specimens. Through the direct shear test, the characterestics of frozen soil shear strength were analyzed and by utilizing numerical methods, chracteristics of strength reduction of weathered granite soil according to repeated action of freezing and thawing, changes in the stability of the slopes when applying freezing and thawing of the soil samples were examined. As a result, the maximum shear stress decreased approximately 10%, and slope stability analysis confirmed that required safety factor is less than compare with the non-frozen samples.

Compressive Strength and Resistance to Freezing and Thawing of Recycled Aggregate Concrete Containing Ground Granulated Blast Furnace Slag (고로슬래그 미분말을 혼입한 순환골재 콘크리트의 압축강도 및 동결융해 저항성)

  • Bae, Suho;Jeon, Juntai
    • Journal of the Society of Disaster Information
    • /
    • v.9 no.4
    • /
    • pp.469-475
    • /
    • 2013
  • The purpose of this experimental research is to estimate compressive strength and resistance to freezing and thawing of recycled aggregate concrete containing ground granulated blast furnace slag. For this purpose, concrete specimens according to substitution ratio of recycled aggregate were made for different replacement ratio of ground granulated blast furnace slag(GGBFS), and then compressive strength and resistance to freezing and thawing were evaluated for those. It was observed from the test results that compressive strength at 28 days of recycled aggregate concrete containing GGBFS of 20% was much more excellent than plain concrete and when air content of concrete was maintained 4 to 6%, influence of substitution ratio of recycled aggregate and replacement ratio of GGBFS on resistance to freezing and thawing was little up to 300 cycles of freezing and thawing.

Effect of Cycles of Freezing and Thawing on the Behavior of Retaining Walls using Reduced-Scale Model Tests (축소 모형실험을 이용한 동결-융해 반복작용이 옹벽 구조물의 거동에 미치는 영향)

  • Yoo, Chungsik;Jang, Dong-Wook
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.3
    • /
    • pp.49-58
    • /
    • 2014
  • This paper presents the results of a reduced-scale physical model investigation into the behavior of retaining walls subject to cycles of freezing and thawing due to seasonal temperature change. Reduced-scale model walls equipped with a temperature control chamber that can simulate freezing and thawing conditions were first constructed and a series of tests were conducted with due consideration of different initial water contents of backfill soil and soil types. The results indicate that cycles of freezing and thawing process increase wall deformation as well as earth pressure acting on the wall. Also revealed was that the effect of the freezing and thawing cycles becomes more pronounced for cases with a larger initial water content and for soils with a larger fine content. Practical implications of the findings from this study are discussed in great detail.

Studies on Effects of Kinds and Concentration of Cryoprotectants, Equilibration Time and Thawing Temperature on the Survival Rate of Rapidly Frozen Porcine Embryos (돼지 수정란의 급속동결시 내동제의 종류와 농도, 평형시간 및 융해온도에 다른 생존성에 관한 연구)

  • 오원진;오건봉;박병권;김상근;이규승
    • Korean Journal of Animal Reproduction
    • /
    • v.18 no.1
    • /
    • pp.15-23
    • /
    • 1994
  • This study was carried out to investigate the effects of concentration, kinds of cryoprotectants, equilibration time, optimum thawing temperature on the survival rate of rapidly frozen porcine embryos. The porcine embryos following dehydration by cryoprotectants containing sucrose were directly plunged into liquid nitrogen and thawed in 30, 35 or 37$^{\circ}C$ water bath, Survival rate was defined as development rate on in vitro culture or FDA-test. The results are summarized as follows : 1. The high survival rate of porcine frozen embryos after rapidly thawed in freezing medium was attained 2.0M DMSO, 2.0M glycerol, 2.0M propanediol, 1.5M ethyleneglycol. 2. The high survival rate of porcine frozen embryos after rapidly thawed in freezing medium was obtained using single cryoprotectant(16.6~40.0%) than mixed cryoprotectants(12.5~33.3%). 3. The eqilibration time on the survival rate of rapidly thawed porcine frozen embryos was attained after short period of time(15.0~33.3%) in the freezing medium higher than long period of time(9.10~30.0%). 4. The thawing temperature on the survival rate of rapidly thawed porcine frozen embryos was attained at 3$0^{\circ}C$ of thawing temperature(33.3~40.6%) in the freezing medium higher than 25 or 37$^{\circ}C$ of thawing temperature.

  • PDF

Frost resistance of porous concrete assuming actual environment (實環境を考慮したポーラスコンクリートの耐凍害性の評価(실제 환경을 고려한 다공질 콘크리트의 내동해성(耐凍害性) 평가))

  • NAKAMURA, Takuro;HORIGUCHI, Takashi;SHIMURA, Kazunori;SUGAWARA, Takashi
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.227-233
    • /
    • 2008
  • Porous concrete has large continuous voids of 20-30 % by volume, and this concrete is attractive as environmental material in Japan i.e. permeable road pavement, river bank protection with vegetation and green roof system which influence thermal environment. It is necessary to confirm the frost resistance when constructing porous concrete structure in cold region. However applicable test method and evaluation criterion of porous concrete has not defined yet. Therefore, the object of this study is to investigate the frost resistance of porous concrete and this investigation attempts to address this concern by comparing 4 kinds of specified freezing and thawing tests methods (JIS A1148 procedure A/B and RILEM CIF/CDF test) in consideration of actual environment. RILEM freeze-thaw tests are different from JIS A1148 freeze-thaw tests, which are widely adopted for evaluating the frost resistance of conventional concrete in Japan, in water absorption, cooling rate, length of freezing and thawing period, and number of freezing and thawing cycles. RILEM CIF test measures internal damage and is primarily applicable for pure frost attack. CDF test is appropriate for freeze-thaw and de-icing salt attack. JIS A1148 procedure A/B showed extremely low frost resistance of porous concrete if the large continuous voids were filled with water and the ice expansion in the large continuous voids set in during cooling. Frost resistance of porous concrete was improved by mixing coarse aggregate (G7) which particle size is smaller and fine aggregate in JIS freezing and thawing tests. RILEM CIF/CDF test showed that freeze-thaw and de-icing resistance of porous concrete was seems to be superior in that of conventional concrete.

  • PDF

Compressive Strength and Durability Evaluation by Freezing and Thawing Test of Repaired Reinforced Concrete Columns (보수보강을 실시한 철근콘크리트 기둥의 동결융해시험을 통한 압축강도 및 내구성 평가)

  • Lee, Chang-Hyun;Eo, Seok-Hong
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.12
    • /
    • pp.529-536
    • /
    • 2020
  • This paper presents experimental investigations about compressive strength and durability of reinforced concrete compressive members repaired using ductile fiber reinforced cementitious composite (DFRCC) and carbon fiber sheet through freezing and thawing test. Total 24 RC specimens of 100x100x400mm size were tested by compressive strength test and freezing and thawing test by KS F 2456. The specimens were reinforced using 4D10 steels and repaired on 4 sides expect on top cycle. Test results showed that the specimens repaired using fiber carbon sheet revealed about 5% higher values of the compressive strength compared than the cases of DFRCC motar. On the other hand, the resurts did not showed meaningful differences in the aspect of durability. For further research, considerations of the steel interference effect and real old specimens such as taken from real deteriorated structures are needed to be tested after repairing with DFRCC and carbon fiber sheet.

Flexural Strength and Durability Evaluation by Freezing and Thawing Test of Repaired Reinforced Concrete Beams (보수보강을 실시한 철근콘크리트 보의 동결융해시험을 통한 휨강도 및 내구성 평가)

  • Lee, Chang-Hyun;Eo, Seok-Hong
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.11
    • /
    • pp.455-461
    • /
    • 2018
  • This paper presents experimental investigations about flexural strength and durability of reinforced concrete beams repaired using ductile fiber reinforced cementitious composite (DFRCC) and carbon fiber sheet through freezing and thawing test. Total 14 RC beams of $100{\times}100{\times}400mm$ size were tested by 3-point bending and freezing and thawing test by KS F 2456. The beams were reinforced using 3D10 steels on both the tensile and compressive sides, and repaired on 3 sides expect on top cycle. Test results showed that the beams repaired using fiber carbon sheet revealed about 15% higher values of flexural strength compared than the cases of DFRCC motar. On the other hand, the results did not showed meaningful differences in the aspect of durability. For further research, consideration of the steel interference effect and real old specimens such as taken from real deteriorated structures are needed to be tested after repairing with DFRCC and carbon fiber sheet.