• 제목/요약/키워드: Freezing and Thawing Test

Search Result 300, Processing Time 0.058 seconds

Evaluation criteria for freezing and thawing of tunnel concrete lining according to theoretical and experimental analysis

  • Moon, Joon-Shik;An, Jai-Wook;Kim, Hong-Kyoon;Lee, Jong-Gun;Lattner, Tim
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.349-357
    • /
    • 2022
  • Abnormal climate events are occurring frequently around the world. In particular, cold waves and heavy snow lead to damage and deterioration of facilities, which can cause loss of life or property damage, such as shortening the lifespan of facilities. Therefore, it is very important to prepare an appropriate maintenance system and to establish a strategy to cope with abnormal weather conditions. In this study, laboratory freezing experiments were performed to analyze the freeze-thaw characteristics affecting the tunnel concrete lining, and heat flow analysis was carried out based on the test results. Based on these experimental and theoretical analysis results, quantitative freeze-thaw evaluation criteria for tunnel concrete linings were proposed.

Evaluation of Ceramics, Alumina and Silicone Carbide Added Concrete Surface Protecting Agent (세라믹스, 알루미나 및 실리콘 카바이드 혼합물이 첨가된 콘크리트 표면보호재의 성능 평가)

  • Kong, Jin-Hee;Kim, Young-Geun;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.43-46
    • /
    • 2009
  • The purpose of this study is to enhance durability of concrete structures that uses this surface protecting material by carrying out the performance test of the surface protecting material of concrete, and as s result, we reached out the conclusion as follow. 1. As a result of the test measuring the stability and adhesive power of conductive film against ultraviolet, freezing & thawing, and damage from seawater that deteriorate the surface protecting material, it was turned out to meet the performance criteria specifying in the KS standard enough to gain a good evaluation to use as a surface protecting material. 2. As a result of the test identifying the neutralization-furtherance, it was assessed to be capable of protecting effectively concrete structures from carbonic acid gas by a very low depth of 0.1mm of neutralization. 3. As a result of the test identifying Penetrated Resistance Properties of chloride ion, as it was turned out to have a very low value of 819 Coulombs, it was assessed that even in the environment where the corrosion by chloride such sea environment is very affective, the film can effectively protect the concrete structure. 4. As a result of the test identifying freezing & thawing, as there was no change in reduction of mass after 400 cycle, it was assessed that the film has a good resistance against freezing & thawing. According to the results of study above, it is expected that this technology can extend its durability of concrete structure and be widely used for concrete structure through means (methods) to prevent the neutralization and damage from seawater as original purposes of the surface protecting material.

  • PDF

Resistance to Chloride Attack of FRP Hybrid Bar After Freezing and Thawing Action (동결융해 이후의 FRP Hybrid Bar의 부식 저항성)

  • Ryu, Hwa-Sung;Park, Ki-Tae;Yoon, Yong-Sik;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.1
    • /
    • pp.59-65
    • /
    • 2018
  • RC(Reinforced Concrete) structures are exposed to various exterior conditions, and the performances of both chloride resistance and freezing/thawing action are evaluated for those exposed to corrosive environment-sea shore. Recently developed FRP Hybrid Bars which is coated with glass fiber and epoxy with core steel has an engineering advantage of higher Elasticity than FRP rod. In this work, corrosion resistance, weight loss, and bond strength are evaluated for the FRP Hybrid Bar tested through freezing/thawing action for 300cycles. The double coated FRP Hybrid Bar shows the least weight loss without defection due to freezing/thawing action. Bond strength in FRP Hybrid Bar increases to 120% of normal steel through torturity effect with Si-coating. Bond strength in normal steel shows 0.86~0.89times in 3-day corrosion acceleration and 0.35~0.38times in 5-day corrosion acceleration, however, that in FRP Hybrid Bar shows little changes in bond strength before and after freezing/thawing action.

An Experimental Study on Resistance of rapid Freezing and Thawing of Chloride-inhibiting Low-Heat Cement (차염성 저발열시멘트의 급속동결융해 저항성에 관한 실험적 연구)

  • Sim, Jong-Sung;Park, Cheol-Woo;Park, Sung-Jae;Kang, Tae-Sung;Ju, Min-Kwan;Kim, Tae-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.589-592
    • /
    • 2008
  • This study was conducted to assess the durability of Chloride-inhibiting Low-Heat Cement while being subjected to freezing-thawing during winter seasons. Although durability varies slightly depending on the conditions of the jobsite, frost damage to concrete resulting from repeated freezing and thawing over the course of seasonal changes is the leading cause behind lowered concrete durability. in addition, concrete that has been subjected to freezing and thawing during the winter season develops a significant amount of expansive force at the core and begins to exhibit signs of damage, such as cracking, peeling, and detachment from the aggregate. Therefore, this study fabricated test specimens using a Chloride-inhibiting Low-Heat Cement(CLC) and the widely used blast furnace slag cement(BFS) and Ordinary Portland Cement(OPC) with water-to-cement ratios of 35%, 40% and 45%, respectively, to assess the durability index of the CLC as per resistance to freezing-thawing. The specimens were then tested using the KS F 2456 method (Testing method for resistance of concrete to rapid freezing and thawing) to measure the dynamic modulus of elasticity. The dynamic modulus of elasticity measurements were then used to derive the durability indices. By comparing the durability indices, it was confirmed that CLC, BFS, and OPC all had superior durability.

  • PDF

Durability Evaluation of Concrete Using Fine Sand of Nakdong-River

  • Kwon, Soon-Oh;Bae, Su-Ho;Lee, Hyun-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.3
    • /
    • pp.265-271
    • /
    • 2014
  • It is strongly needed to investigate the fine sand as an alternative fine aggregate of well-graded river sand because the fine sand which is being enormously distributed in the midstream and downstream of Nakdong-River in Korea has a poor grading but good quality as a fine aggregate for concrete. Thus, the purpose of this experimental research is to evaluate the durability of concrete using the fine sand to utilize it actively as a fine aggregate. For this purpose, the concrete specimens using different fine sand were made for the specified concrete strength of 35MPa, and then their durability such as the resistance to freezing and thawing and carbonation, and drying shrinkage were evaluated. It was observed from the test results that the resistance to freezing and thawing and carbonation of concrete using the fine sand was similar to that of concrete using reference sand, but the drying shrinkage of concrete using the fine sand with small fineness was comparatively lager than that of concrete using reference sand.

Improvement of Soil-Cement with additives (첨가제에 의한 Soil-Cement의 성질 개량)

  • 도덕현
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.21 no.1
    • /
    • pp.63-77
    • /
    • 1979
  • Six kinds of weathered granite soils whose degree of weathering and mineral compo- sitions are different, were tested in order to improve the soil-cement. by performing compression test, durability (freezing-thawing) test and mesurement of shrinkage are made. From result of the tests as mentioned above, the following conclusions are drawn. The unconfined compressive strength of seondary additives containing soil-cement mixtures and their resistance against freezeing-thawing are more increased and shrinkage is more decreased than soil-cement mixtures only in case opitimun quantity of additives are added to soil-cement mixtures, and according as types of soils.

  • PDF

A Study on the Engineering and Environmental Characteristics of Phosphogypsum-Cement-Soil Mixtures (인산석고 시멘트 혼합토의 공학적.환경적 특성 연구)

  • Chang, Dong-Su;Yeon, Kyu-Seok;Kim, Ki-Sung;Ha, Seon-Hyo;Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.3
    • /
    • pp.83-91
    • /
    • 2011
  • This study aimed to investigate the engineering and environmental characteristics of phosphogypsum-cement-soil mixtures composed of phosphogypsum, soil, and a small amount of cement was analysed on the basis of the unconfined compression test, the tensile strength test, the freezing and thawing test, the wetting and drying test, SEM and EDS analysis, XRD analysis and Leaching test. The specimens were manufactured with soil, cement and phosphogypsum. The cement contents was 10 %, and the phosphogypsum contents was 10, 20, 30, and 40 % by the weight of total dry soil. Each specimen was manufactured after curing at constant temperature and humidity room for 3, 7 and 28 days, after which the engineering characteristics of phosphogypsum-cement-soil mixtures were investigated using the unconfined compression test, the tensile strength test, the freezing and thawing test, the wetting and drying test. The basic data were presented for the application of phosphogypsum-cement-soil mixtures as construction materials. To investigate the environmental characteristics, leaching test was performed and the leaching test results were far below than of regulatory requirement of Waste Management Act in Korea. Therefore the results show that phosphogypsum is environmentally safe and can be used as construction materials in environmental aspect.

A Durability Assessment on Complex Deterioration of Concrete with Ground Granulated Blast-Furnace Slag Replacement (복합열화 환경하에서의 고로슬래그미분말 사용 콘크리트의 내구성능 평가)

  • Lee, Seung-Hoon;Kim, Hyung-Doo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.2
    • /
    • pp.171-175
    • /
    • 2010
  • This paper presents the experimental results of frost durability characteristics including freezing-thawing and de-icing salt scaling of the concrete for gutter of the road and marine structure. Mixtures were proportioned with the three level of water-binder ratio(W/B) and three binder compositions corresponding to Type I cement with 0%, 30% and 50% GGBS(Ground granulated blast furnace slag) replacement. Also, two different solutions of calcium chloride were used to evaluate their effect on the frost durability resistance. Specially, in case of complex of freezing and thawing with salt and carbonation, the deterioration of concrete surface is evaluated. Test results showed that the BFS30 and BFS50 mixture exhibited higher durability and lower mass loss values than those made with OPC mix and the use of GGBS can be used effectively in terms of economy and frost durability of the concrete to be in complex deterioration. Therefore, the resistance to complex deterioration with freezing-thawing was strongly influenced by the strength and the type of cement.

Experimental Study on Correlation Analysis of Air-void, Air-spacing factor and Long-term Durability for Roller-compacted Concrete pavement (롤러 전압 콘크리트 포장의 공기량 및 기포간격계수와 장기 내구성의 상관관계 분석을 위한 실험적 연구)

  • Lee, Jun Hee;Lee, Seung Woo
    • International Journal of Highway Engineering
    • /
    • v.18 no.1
    • /
    • pp.63-72
    • /
    • 2016
  • PURPOSES : The use of roller-compacted concrete pavement (RCCP) is an environmentally friendly method of construction that utilizes the aggregate interlock effect by means of a hydration reaction and roller compacting, demonstrating a superb structural performance with a relatively small unit water content and unit cement content. However, even if an excellent structural performance was secured through a previous study, the verification research on the environmental load and long-term durability was conducted under unsatisfactory conditions. In order to secure longterm durability, the construction of an appropriate internal air-void structure is required. In this study, a method of improving the long-term durability of RCCP will be suggested by analyzing the internal air-void structure and relevant durability of roller-compacted concrete. METHODS : The method of improving the long-term durability involves measurements of the air content, air voids, and air-spacing factor in RCCP that experiences a change in terms of the kind of air-entraining agent and chemical admixture proportions. This test should be conducted on the basis of test criteria such as ASTM C 457, 672, and KS F 2456. RESULTS : Freezing, thawing, and scaling resistance tests of roller compacted concrete without a chemical admixture showed that it was weak. However, as a result of conducting air entraining (AE) with an AE agent, a large amount of air was distributed with a range of 2~3%, and an air void spacing factor ranging from 200 to $300{\mu}m$ (close to $250{\mu}m$) coming from PCA was secured. Accordingly, the freezing and thawing resistance was improved, with a relative dynamic elastic modulus of more than 80%, and the scaling resistance was improved under the appropriate AE agent content rate. CONCLUSIONS : The long-term durability of RCCP has a direct relationship with the air-void spacing factor, and it can be secured only by ensuring the air void spacing factor through air entraining with the inclusion of an AE agent.

Processing Conditions and Quality Stability during Storage of Frozen-dried Filefish (말쥐치 동건품의 가공조건 및 저장중의 품질변화)

  • LEE Eung-Ho;KIM Hee-Yun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.15 no.2
    • /
    • pp.111-116
    • /
    • 1982
  • For the effective utilization of the fish resources in coastal regions, investigations on processing conditions of frozen-dried product, quality stability of the Product during storage, and utilization as a food material were carried out with the filefish, Navoden modestus. The processing condition was determined with the moisture content and texture of the product. The duality of the product was evaluated on chemical composition, rehydration capacity, TBA value, browning, omission test and sensory score. The conditions for the processing of frozen-dried filefish under the conditions of freezing temperature at $-10^{\circ}C$ and forced air thawing at $56{\pm}2^{\circ}C$ with a velocity of 1 m/sec were as follows : freezing temperature, $-10^{\circ}C$ : freezing time, 10 hours; thawing time, 2 hours ; and repeated number of freezing and thawing, 5 times. The yield, the condition of moisture and protein were $10.2\%,\;23.6\%\;and\;70.6\%$, respectively. The frozen-dried product packed with air and stored at room temperature showed no remarkable changes in TBA value, rehydration capacity, browning during the storage period of 90days. The frozen-dried filefish showed no remarkable differences in the taste, odor and texture, comparing with frozen-dried Alaska pollack on the market.

  • PDF