• Title/Summary/Keyword: Freezing and Thawing Resistance

Search Result 255, Processing Time 0.023 seconds

A Study on Freezing and Trawing Resistance of Concrete with the Ratio of Ground Granulated Blast-Furnace Slag Replacement (고로슬로그 미분말의 치환율에 따른 콘크리트의 동결융해 저항성에 관한 연구)

  • 최세규;김생빈
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.5
    • /
    • pp.149-155
    • /
    • 1997
  • 고로슬래그 미분말을 사용한 콘크리트\ulcorner 수화속도가 느려 어린 재령시 동해의 영향을받기 쉽다. 본 연구에서는 고로슬래그 미분말을 사용한 콘크리트의 동결융해 저항성을 알아보기 위해 고로슬래그 미분말의 치환율과 물-결합재비를 변화시켜 제조한 콘크리트에 대해 동결융해시험을 실시하였다. 또한 동일한 치환율, 물-결합재비의 콘크리트에 AE제를 첨가시켜 동결융해 저항성의 개선효과를 알아보았다. 시험결과 고로슬래그 미분말의 치환율이 증가할수록 동결융해 저항성은 작게 나왔다. 또한 non-AE 콘크리트의 경우 물-결합재비가 51%, 45%일 때 내구성지수는 각각 2.4%, 40.0%이하로 매우 나쁘게 나타났으나, AE콘크리트의 경우 물 -결합재비가 45%와 51%인 콘크리트의 내구성지수는 각각 90.2% 80.9%이상으로 동결융해 저항성이 매우 우수하게 나타났다.

Evaluation on the Properties of Modified-sulfur Concrete as a Basic Study for Development of Anti-corrosive Concrete (내부식성 콘크리트 개발을 위한 기초연구로서 개질유황 혼합 콘크리트의 물성 평가)

  • Park, Sang-Soon;Na, Ok-Jung
    • Corrosion Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.28-37
    • /
    • 2016
  • Due to the increased construction of offshore concrete structures and the use of de-icing salts for the purpose of snow removal, the needs for the development of anti-corrosive concrete are increasing. To solve these problems, an evaluation of the mechanical and durability properties for concrete were conducted by mixing modified-sulfur as 0 %, 5 %, 10 %, 15 % cement weight ratio. Both strengths and the properties affecting durability such as water absorption coefficient, chloride ion permeability, accelerated carbonation resistance, rapid freezing and thawing, and chemical resistance were evaluated. All evaluations performed were according to the test specifications associated KS. The results indicate that mixing of modified-sulfur lowed chloride ion permeability and improved chemical resistance.

Experimental Study on Frost Resistance of High-Strength Concrete Using Granulated Blast-Furnace Slag (고로슬래그 미분말을 흔입한 고강도콘크리트의 내동해성에 관한 실험적 연구)

  • 김무한;권영진;강석표;박선규
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.4
    • /
    • pp.41-48
    • /
    • 2000
  • This study is to investigate for the frost resistance of high-strength concrete using finely ground granulated blast-furnace slag with experimental parameters, such as water/binder ratio, replacement proportion of granulated blast-furnace slag, air content and methods of curing. The high-strength concrete using granulated blast-furnace slag is effective to resist frost and decrease scaling. The more increasable replacement proportion of granulated blast-furnace slag is, the better the effect is. The high-strength concrete using granulated blast-furnace slag needs hydrating adequately to prevent deterioration by drying in the early curing period. The micro structure of high-strength concrete, increased to the pore number with diameter of 0.03~0.1mm, is changed by using granulated blast-furnace slag, but is presented differently according to water/binder ration and replacement proportion of granulated blast-furnace slag.

Durability and Strength of Dense Grate Permeable Concrete Using Silica sand and Flexible Alkyd Resin (유변성(油變性) 알키드 수지(樹脂)와 규사(硅砂)를 사용(使用)한 밀입도(密粒度) 투수(透水)콘크리트의 강도(强度) 및 내구특성(耐久特性))

  • Kim, In-Jung;Hong, Chang-Woo
    • Resources Recycling
    • /
    • v.19 no.6
    • /
    • pp.36-42
    • /
    • 2010
  • Researches on resources recycling in the field of construction have made an extensive progress such as recycled aggregate of waste concrete and recycling of asphalt. On the other hand, there are almost never researches on pavement method with used waste frying oil. In South Korea, 0.2 million ton used waste frying oil is discharged every year. It is guessed that about 0.1 million ton used waste frying oil can be collected. If used waste frying oil is recycled, it is expected that disuse cost will be reduced and water pollution of rivers will be prevented. Therefore, the purpose of the study was to evaluate on mechanical features (strength, water resistance, chemical resistance, abrasion resistance, freezing and thawing resistance and permeable coefficient) whether dense graded permeable concrete mixing silica sand with flexible alkyd resin manufactured by making ester reaction with collected used waste frying oil to make alkyd resin could be applied to road pavement for non-roadway. The results of the study were as follows. In flexural strength, it had 1.6 times as much as road design standard 4.5MPa. In water resistance, chemistry resistance and freezing and thawing resistance, they had lack of strength in early age. As age went by, they didn't have large changes. And curing temperature had phenomenon of increase in strength at rather low temperature than high temperature by glass transition temperature of resin. Therefore, considering workability, strength and durability when it was applied to road pavement, it was reasonable that the mixing ratio of flexible alkyd resin was 10~15% in comparison with silica sand weight.

Freezing Resistance of Chestnut (I) - The Difference among Cultivars and Tissue Parts - (밤나무의 내한성(耐寒性)(제1보(第一報)) - 품종별(品種別) 부위별(部位別) 차이(差異)에 관(關)하여 -)

  • Cho, Tae Hwan;Hong, Sung Gak
    • Journal of Korean Society of Forest Science
    • /
    • v.26 no.1
    • /
    • pp.19-22
    • /
    • 1975
  • Freezing resistance of ten cultivars of Chestnut (Castanea crenata S. et Z.) collected from four different sites of Kyunggi Province, Korea on March 2, 1975, was measured to find out the differences among tissue parts, and those among cultivars. The freezing and thawing rates were controlled lower than $6^{\circ}C/hr$. which occurs in nature. The resistance to low temperature was in order from lowest to highest; winter bud, cambium, xylum ray parenchyma and bark cortex. The difference in cold hardiness among cultivars was not consistent among tissue parts of twig stem except in cultivar Dan-Taeck of which all tissue parts showed highest cold-hardiness. The importance of the study on the seasonal variation in cold hardiness of different tissue parts was discussed in terms of choosing the most cold resistant Chestnut culitivar in Korea.

  • PDF

Freeze-thaw Resistance Estimation of Concrete using Surface Roughness and Image Analysis (콘크리트의 동결융해 저항성 추정을 위한 표면 거칠기 및 이미지 분석의 적용성)

  • Lee, Binna;Lee, Jong Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.3
    • /
    • pp.1-7
    • /
    • 2018
  • As part of a research dedicated to the field evaluation of the durability of concrete subjected to freezing-thawing, this study analyzes the relationship between the surface roughness and the relative dynamic elastic modulus through image analysis. Four mix compositions with water-to-binder ratios (W/B) of 40%, 50%, 60% and 70% and without AE agent were considered to provoke early freezing. The basic physical properties of the mixes including the relative dynamic elastic modulus and the compressive strength were first evaluated experimentally according to W/B. Then, tests were performed to measure the surface roughness followed by photographs and SEM image analysis. The measured surface roughness tended to increase with larger number of freezing-thawing cycles regardless of W/B. The relative dynamic elastic modulus appeared to increase gradually with the number of cycles for the relatively denser mixes with W/B of 40% and 50%. Besides, the surface roughness increased only at rupture for the mixes with W/B of 60% and 70%. Moreover, the analysis of the photographs of the surface of the mixes with W/B of 40% and 50% revealed that the degradation progressed gradually from the surface with the freezing-thawing cycles. However, for the mixes with W/B of 60% and 70%, apparent change of the surface remained very insignificant until rupture at which damage like cracking could be observed. Consequently, the analysis of surface photograph or the measurement of the surface roughness presented some limitation in assessing the degree of freezing-thawing-induced degradation in case of relatively porous specimens. On the other hand, the photograph and surface roughness appeared to be sufficient for assessing such degradation for the mixes with W/B of 40% and 50%. Accordingly, the image of the surface and the surface roughness are potentially applicable on site for the assessment of freezing-thawing damages in relatively dense mixes.

A Study on the Abrasion Resistance of Polymer - Modified Mortar According to Curing Conditions (양생조건에 따른 폴리머 시멘트 모르터의 내마모성에 관한 연구)

  • Jo, Young-Kug;So, Seoung-Young
    • Journal of the Korea Institute of Building Construction
    • /
    • v.5 no.4 s.18
    • /
    • pp.115-120
    • /
    • 2005
  • In recent years, polymer-modified mortars using polymer dispersions have been widely used as finish and repair materials in the construction industry because of their excellent properties compares to those of ordinary cement mortar. Especially, the adhesion improvement of ordinary cement mortar and concrete has attracted a great deal of attention from researchers, and several unique and simply applicable techniques for the adhesion improvement have been developed. The purpose of this study is to evaluate the abrasion resistance of polymer-modified mortar according various curing methods. The polymer-modified mortar are prepared with various polymer-cement ratios, and are subjected to three curing methods such as dry rure, standard cure and freezing and thawing cure after two curing methods, and then tested for abrasion. From the test results, the polymer-modified mortars with various polymer-cement ratios have some superior abrasion resistance compared with plain mortar. The abrasion resistance of polymer-modified mortars increase with an increase in the polymer-cement ratio, and is better under water cure than any other curing methods. It is concluded that the abrasion resistance of cement mortar is markedly improved by modifying of polymer dispersion.

Evaluation on the Durability of High Performance Concrete Used Expansive Additive and Shrinkage Reducing Agent (팽창재와 수축저감제 사용 고성능 콘크리트의 내구성 평가)

  • Koh Kyoung-Taek;Park Jung-Jun;Kang Su-Tae;Lee Jong-Suk;Kim Do-Gyeong;Kim Sung-Wook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.818-821
    • /
    • 2004
  • Generally, the high performance concrete of drying cracking and autogenous shrinkage are tend to be increased. In the previous study, it was found that the using method in combination with expansive additive and shrinkage reducing agent was more effective than the separtely using method of that. This study is to investigated the durability of high performance concrete using expansive additive and shrinkage reducing agent. Test results showed that the high performance concrete using expansive additive and shrinkage reducing agent had very good not only the durability performance such as salt injury, carbonation, resistance to freezing-thawing and permeability but also the resistance to shrinkage.

  • PDF

A Study on the Freeze-Thaw Resistance of Water-permeable Concretes (투수성 콘크리트의 동결융해 저항성에 관한 연구)

  • 은재기;김완기;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.433-438
    • /
    • 2000
  • The purpose of this study is to examine the resistance of water-permeable concretes to freezing and thawing action. The water-permeable concretes with cement-aggregate ratio of 1:5.5(by weight) and two kinds of admixture content [SP : superplasticizer(0, 1.0%), HPAE : high performance air entraining agent(0.5, 1%)] used OPC(ordinary portland cement) as binder were prepared, and then tested for relative dynamic modulus of elasiticity, mass change, length change and durablity factor. It's been concluded from the test results that the superior relative dynamic modulus of elasiticity and durability factor of water-permeable concretes were obtained at superplaciticizer 1.0% after 300 cycles. The water-permeable concretes used superplasiticizer 1.0% having relative durability factor of 88% after 300 cycles.

  • PDF

Enhanced Durability Performance of Polymer Modified Cement Composites for Concrete Repair Under Combined Aging Conditions (복합열화 환경을 받는 콘크리트 시설물을 위한 보수용 폴리머 시멘트 복합체의 내구성능 향상에 관한 연구)

  • Won, Jong-Pil;Park, Chan-Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.6
    • /
    • pp.27-34
    • /
    • 2005
  • The purpose of this study is to improve the durability performance of polymer modified cement composites for repair of concrete under combined aging conditions. The experimental procedure was divided into three parts. First, the replacement level of mineral admixtures in polymer modified cement composites were determined in an experimental study based on a Box Behnken design. Second, the flow value, compressive strength and chloride permeability test of sixteen types of mixtures were conducted. Test results show that the polymer modified cement composites were effected on the improvement of the compressive strength and permeability performance. Third, the effects on the replacement level of silica fume mixture was evaluated by the compressive strength, chloride permeability, chemical resistance and repeated freezing and thawing cycles test. They demonstrated that the polymer modified cement composites using mixture of silica fume, fly ash, and blast furnace slag improved the durability performance.