• Title/Summary/Keyword: Freezing and Thawing Resistance

Search Result 256, Processing Time 0.026 seconds

Mechanical Properties of Very Rapid Hardening Polymer Mortar for Concrete Repair (보수용 초속경 폴리머 모르타르의 역학적 특성)

  • Hong, Kinam;Shin, Junsu;Han, Sanghoon;Seo, Dongwoo;Ahn, Kwangkuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.8
    • /
    • pp.31-37
    • /
    • 2014
  • In this study, mechanical properties of Very-Rapid Hardening Polymer (VRHP) mortar were investigated. To do it, 75 VRHP mortar specimens were tested by the compressive test, bending test, bonding test, freezing and thawing test, length variation test, and water absorption test. From the test results, it was confirmed that the bond strength of VRHP was higher than that of normal concrete by 50 %, and the resistance of freezing and thawing of VRHP was more excellent than normal concrete. In addition, length variation ratio and water absorption ratio of VRHP were smaller than those of normal concrete by 20 %. Therefore, It should be mentioned that VRHP can be successfully used as the material for repairing the crack of concrete structure.

Effect of Fiber Hybridization on Durability Related Properties of Ultra-High Performance Concrete

  • Smarzewski, Piotr;Barnat-Hunek, Danuta
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.2
    • /
    • pp.315-325
    • /
    • 2017
  • The purpose of the paper is to determine the influence of two widely used steel fibers and polypropylene fibers on the sulphate crystallization resistance, freeze-thaw resistance and surface wettability of ultra-high performance concrete (UHPC). Tests were carried out on cubes and cylinders of plain UHPC and fiber reinforced UHPC with varying contents ranging from 0.25 to 1% steel fibers and/or polypropylene fibers. Extensive data from the salt resistance test, frost resistance test, dynamic modulus of elasticity test before and after freezing-thawing, as well as the contact angle test were recorded and analyzed. Fiber hybridization relatively increased the resistance to salt crystallization and freeze-thaw resistance of UHPC in comparison with a single type of fiber in UHPC at the same fiber volume fraction. The experimental results indicate that hybrid fibers can significantly improve the adhesion properties and reduce the wettability of the UHPC surface.

Low Temperature Tolerance of Panax quinquefolium (미국삼(Panax quinquefolium)의 저온 저항성에 관한 연구)

  • Lee, Jong-Chul;John, T.A.Proctor
    • Journal of Ginseng Research
    • /
    • v.20 no.2
    • /
    • pp.179-183
    • /
    • 1996
  • One exotherm was detected in the intact ginseng seeds containing more than 35% water, but in seeds with 20% there was no exotherm. The shapes of exotherm were remarkably uniform without relation to water content above 35%. The temperature at the initiation of freezing varied from -3.5$^{\circ}C$ to -9.6$^{\circ}C$ with the different water content in the seeds, and the Initial temperature of freezing delayed with the decrease of water content. The resistance damage at low temperature appeared in order of maln body, rhizome, lateral root of 3-year-old yearling rhizome, and fine root of 3-year-old. Ginseng roots didn't receive any damage at -5$^{\circ}C$ for 24 hours. Otherwise they received serious damage below -1$0^{\circ}C$ even for 5 hours'exposure. Hence, alternative low temperature gave more severe damage compared to constant low temperature. This result suggests that the Possibility of receiving injury at low temperature was higher during the thawing season of the early spring than in the winter.

  • PDF

Strengthening Performance of RC Beams Exposed to Freezing and Thawing Cycles after Strengthening in Shear with CFRP Sheet (CFRP 쉬트로 전단보강후 동결융해에 노출된 철근콘크리트 보의 보강성능)

  • Yun, Hyun-Do;Kim, Sun-Woo;Kim, Yun-Su;Lee, Min-Jung;Seo, Soo-Yeon;Choi, Ki-Bong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.161-164
    • /
    • 2008
  • In recent years, carbon fiber-reinforced polymer (CFRP) has been widely used for repairing and/or strengthening structural elements in concrete. Not enough test data, however, are available to predict the long-term performance of the repaired and improved structures exposed to weathering. The objective of this research is to study the effect of freeze-thaw cycling on the behavior of reinforced concrete (RC) beams strengthened in shear with carbon fiber sheet. Six small-scale RC beams (100mm${\times]$100mm${\times]$400mm) were strengthened with CFRP in shear, subjected to up to 400 cycles freeze-thawing from -17${\sim}4^{\circ}C$, and tested to failure in four-point bending. Test result, there was no significant damage to carbon fiber sheet strengthened concrete beams had been suffered 30 cycles of freeze-thawing, and more over 60 cycles of freezing-thawing brought about a reduction in resistance of only 25% of the initial level.

  • PDF

Unconfined compressive strength and freeze-thaw resistance of sand modified with sludge ash and polypropylene fiber

  • Gullu, Hamza;Fedakar, Halil I.
    • Geomechanics and Engineering
    • /
    • v.13 no.1
    • /
    • pp.25-41
    • /
    • 2017
  • In recent years, the amount of sludge ash (SA) has considerably increased due to rapid urbanization and population growth. In addition, its storage in landfills induces environmental pollution and health problems. Therefore, its disposal in an environmentally friendly way has become more important. The main goal of this study is to investigate the reusability of sludge ash as an additive with polypropylene fiber (PF) to stabilize marginal sand based on the compressive strength performances from UCS tests. For this purpose, a series of UCS tests was conducted. Throughout the experimental study, the used inclusion rates were 10, 15, 20 and 30% for sludge ash and 0, 0.5 and 1% for polypropylene fiber by total dry weight of the sand+sludge ash mixture and the prepared samples were cured for 7 and 14 days prior to the testing. Freezing and thawing resistance of the mixture including 10% sludge ash and 0, 0.5 and 1% polypropylene fiber was also examined. On the basis of UCS testing results, it is said that sludge ash inclusion remarkably enhances UCS performance of sand. Moreover, the addition of polypropylene fiber to the admixtures including sand and sludge ash significantly improves their stress-strain characteristics and post-peak strength loss as well as UCS. As a result of this paper, it is suggested that sludge ash be successfully reused with polypropylene fiber for stabilizing sand in soil stabilization applications. It is also believed that the findings of this study will contribute to some environmental concerns such as the disposal problem of sludge ash, recycling, sustainability, environmental pollution, etc. as well as the cost of an engineering project.

Strength and Durability Properties of Polymer Concrete Utilizing Oyster Shell Powder as a Filler (굴 패각 분말을 충전재로 활용한 폴리머 콘크리트의 강도 및 내구 특성)

  • Sung, Chan-Yong;Kim, Young-Ik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.6
    • /
    • pp.125-134
    • /
    • 2010
  • This study was performed to evaluate the workability, strengths and durability of polymer concrete using oyster shell that are reclaimed at public shore illegally or leaved on the surroundings of shore to prevent the environmental pollution. We investigated the effect of oyster shell powder (OSP) and $CaCO_3$. on the slump, compressive strength, flexural strength, acid sulfuric and freezing and thawing resistance as a filler of polymer concrete. Modified OSP obtained by crushing oyster shell (less than 0.15 mm size) consists of 60.47 wt% of $SiO_2$ and 39.5 wt% of $CaCO_3$. As a result of slump test by OSP and $CaCO_3$. contents, it is found that slump of specimen used OSP is lower than that used $CaCO_3$. and the more OSP contents are, its slump is increased. Compressive and flexural strength of polymer concrete using OSP are similar or slightly lower than that using $CaCO_3$. In acid sulfuric test for 5 % $H_2SO_4$ and freezing thawing test, regardless of kinds of fillers and contents are not found fatal defects in weight change, falling-off in surface and durability factor.

Durability of Ultrarapid-Hardening Polymer-Modified Mortar Using Redispersible Polymer Powder (재유화형 분말수지 혼입 초속경 폴리머 시멘트 모르타르의 내구성)

  • 이윤수;주명기;연규석;정인수
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.660-667
    • /
    • 2002
  • The effects of polymer-cement ratio and antifoamer content on the durability of ultrarapid-hardening polymer-modified mortars using redispersible polymer powder are examined. As a result, regardless of the antifoamer content, the setting time of the ultrarapid-hardening polymer-modified mortars using redispersible polymer powder tend to delay with increasing polymer-cement ratio. The water absorption and chloride ion penetration depth of the ultrarapid-hardening polymer-modified mortars using redispersible polymer powder decrease with increasing polymer-cement ratio and antifoamer content. The resistance of freezing and thawing and chemicals improvement is attributed to the improved bond between cement hydrates and aggregates because of the incorporation of redispersible polymer powder

Fundamental Study for Development of an Anti-Icing Pavement System Using Carbon-Fiber Sheet (탄소섬유 쉬트를 활용한 도로 결빙방지 시스템 개발을 위한 기초연구)

  • Lim, Chisu;Park, Kwangpil;Lee, Jaejun;Lee, Byungsuk
    • International Journal of Highway Engineering
    • /
    • v.18 no.3
    • /
    • pp.59-65
    • /
    • 2016
  • PURPOSES : This paper aims to develop a road pavement de-icing system using carbon sheet to replace the older snow de-icing method. Carbon sheet is a light and high-strength metal. Hence, various bodies of research for its applications in many industries have progressed. METHODS : The experiment was conducted in a laboratory. The carbon sheet supplied voltage through a power supply system, and produced heat transfers to the concrete surface. Various factors, such as pavement material, carbon sheet width, penetration depth, and freezing-thawing resistance, were considered in the conducted experiments to confirm the heating transfer efficiency of the carbon sheet. RESULTS : The carbon sheet used was a conductor. Therefore, it produced heat if voltage was supplied. The exposed carbon sheet on the atmosphere did not affect the carbon sheet width when it provided constant voltage. However, the sheet showed different heating behaviors by width change when the carbon sheet penetrated into the concrete. Moreover, the freezing-thawing resistance was decreased by the carbon sheet with increasing width. CONCLUSIONS : The experiments confirmed the possibility of developing a road snow melting system using a carbon sheet. The antiicing system using the carbon sheet to replace the traditional anti-icing system has disadvantages of environmental pollution risk and electric leakage. The pavement also improved its toughness resistance. The utilization value will be very high in the future if carbon sheet heat loss can be minimized and durability is improved.

A Study on the Resistance of Freezing-Thawing for the Material of Concrete or Asphalt Using Smashed Rock (쇄석을 이용한 콘크리트 및 아스팔트용 재료의 동결융해 저항성)

  • Kim, Young-Su;Bang, In-Ho;Heo, No-Young;Lee, Jea-Ho;Choi, Jeong-Ho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.2
    • /
    • pp.35-47
    • /
    • 2002
  • Soil and rock were yielded during construction of subway in Taegu. Produced rock is a kind of a sedimentary rock with low strength and low durability of shrinkage. So it is difficult using for resources engineering. But in our country, it is very important to use material resources due to lack of natural resources. In this study, after cracking sedimentary rock like black shale and red shale, they are compared with granite which usually used road constriction field to investigate property of use for road construction. Consequently, the engineering character of origin rock is satisfactory, but the soundness test, black shale and red shale are less than KS 12.9%, 37.5% respectively. The result of concrete freezing-thawing test shows that the strength among three materials is not a wide difference but red shale has relatively low strength. The result of asphalt freezing-thawing test with 50 cycles indicates that the stability of red shale in lower than KS 484~561kg on base course, 336~375kg on surface course respectively. A further research should be needed for propriety to the material of shale.

  • PDF

A Study on the Reduction of Combined Deterioration by Mixing Latex in Base Concrete (바탕콘크리트의 라텍스 혼입에 따른 복합열화 저감에 관한 연구)

  • Kim, Dae-Geon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.101-102
    • /
    • 2023
  • This study aims to mix the base concrete by mixing latex to improve the durability performance to reduce the composite deterioration of the base concrete. Latex fiber has high resistance to freezing and thawing, adhesion, and deicing agent (calcium chloride), and it is used to secure long-term durability to reduce cracking and compound deterioration of concrete. In addition, through experiments, we are trying to find ways to improve the strength of concrete by studying the mixing of the appropriate mixing ratio of latex.

  • PDF