• Title/Summary/Keyword: Freeze and refrigeration capacity

Search Result 4, Processing Time 0.019 seconds

Present Situation and Analysis of Cold Storage Facilities for Fisheries Products (수산물 냉동냉장설비의 현황 및 분석)

  • Son, Chang-Hyo;Oh, Hoo-Kyu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.6
    • /
    • pp.406-412
    • /
    • 2011
  • This paper describes the analysis on freeze and refrigeration capacity of cold storage facilities for fisheries products during the last 15 years. And based on the analysis results, we prospect the number and scale of cold storage facilities in the near future. The main analysis results are summarized by the followings; Under the present conditions, the number and scale of our facilities is 879 and 3,586,824 ton, respectively. In comparison of the present and last 15 years ago, the business number increases about 22%, the accommodation capacity increases approximately 80%. In the reported update reference with the related data during the last 15 years, the capacity of cold storage facilities in 2011 expects to reach up to 4,600,000 ton. The newlyestablished facility in 2011 has the function of a multi-purpose distribution center as well as the existing cold storage, but this facilities converges in the capital area. Therefore, in this paper, we provided the basic reference data for the present situation and prediction of our cold storage facilities. But it is necessary to investigate and analyse widely our cold storage facilities for fisheries products in the near future.

Performance Analysis of Freezing Desalination System using Seawater Heat Pump (해수 히트펌프를 이용한 냉동법 담수화시스템 개념설계)

  • Lee, Ho-Saeng;Lee, Seung-Won;Yoon, Jung-In;Kim, Hyeon-Ju
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.373-378
    • /
    • 2011
  • The freeze desalination cycle with seawater heat pump system is simulated and designed for the basic data for the design of freeze desalination system. The basic model of seawater heat pump system is refrigeration cycle and indirect freeze desalination method is used for seawater desalination. The cycle performance of seawater heat pump such as COP, compressor work, condensing capacity was analyzed and the desalination performance such as fresh water productivity and energy per unit fresh water productivity was compared with respect to the seawater temperature of condenser inlet and ice ratio in the evaporator. The compressor work and condensing capacity decreased with respect to the decrease of seawater inlet temperature. The energy per unit fresh water productivity in case of $8^{\circ}C$ seawater inlet temperature showed 28.9% lower than that of $20^{\circ}C$.

An Experimental Stuff on the Performance of Multi-type Heat Pump using Capillary Tubes (모세관을 이용한 멀티형 열펌프의 신뢰성에 관한 실험적 연구)

  • 권영철;장근선;이윤수;김대훈;전용호;이상재
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.9
    • /
    • pp.749-755
    • /
    • 2002
  • In order to develop a multi-type heat pump system with two indoor units of non-uniform capacities, the optimum refrigerant circuit was developed using capillary tubes. The refrigerant circuit was composed of four main parts, a heating circuit, a cooling circuit, a by-pass circuit and a balance circuit. The system characteristics of multi-type heat pump was investigated through the rating test and the reliability test, using the multi-type psy-chrometric calorimeter. The results of the rating test showed that the capacity of the multi-type heat pump was about 93% of the design value. In particular, the capacity of cooling single mode was about 13% higher than the design value, and the capacity of heating multi mode was about 5% higher than the design value. The reliability of the multi-type heat pump was verified by various reliability tests (overload, extension tube, freeze up, under/over charging, sweat, flood back). The optimal amount of refrigerant charge and compressor capacity were determined from the present work.

A study on design for free cooling system using dry cooler (드라이쿨러를 적용한 외기냉수냉방 시스템 설계에 관한 연구)

  • Yoon, Jung-In;Baek, Seung-Moon;Heo, Jeong-Ho;Kim, Young-Min;Son, Chang-Hyo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.9
    • /
    • pp.1027-1031
    • /
    • 2014
  • Free cooling system is used to reduce energy consumption of cooling system. Free cooling system is consisted of cooling group and dry-cooler in which heat exchange of chilled water and out air is conducted. Although this system has an excellent energy saving effect in place having cooling load regularly, data or material of design for free cooling system is lacked. In this study, characteristics analysis of free cooling system is conducted through software HYSYS with changing some facts. The main result is following as : Dry-cooler capacity is influenced by out air temperature, required chilled water temperature and LMTD(Logarithmic Mean Temperature Difference) of heat exchanger. As out air temperature is more low, dry-cooler capacity become increased. in addition, as required chilled water temperature is more high and LMTD is more low, the out air temperature range is widened for using dry-cooler. If out air temperature is below $0^{\circ}C$, antifreeze need to be used because freeze and burst can be occurred. In case of South Korea, antifreeze of 34% of ethylene glycol concentration is proper. When compressor load of R22, R134a and R407C is compared, considering environmental regulation and energy consumption, R134a is best working fluid.