• Title/Summary/Keyword: Freely moving rats

Search Result 12, Processing Time 0.02 seconds

Repeated Administration of Korea Red Ginseng Extract Increases Non-Rapid Eye Movement Sleep via GABAAergic Systems

  • Lee, Chung-Il;Kim, Chung-Soo;Han, Jin-Yi;Oh, Eun-Hye;Oh, Ki-Wan;Eun, Jae-Soon
    • Journal of Ginseng Research
    • /
    • v.36 no.4
    • /
    • pp.403-410
    • /
    • 2012
  • The current inquiry was conducted to assess the change in sleep architecture after long periods of administration to determine whether ginseng can be used in the therapy of sleeplessness. Following post-surgical recovery, red ginseng extract (RGE, 200 mg/kg) was orally administrated to rats for 9 d. Data were gathered on the 1st, 5th, and 9th day, and an electroencephalogram was recorded 24 h after RGE administration. Polygraphic signs of unobstructed sleep-wake activities were simultaneously recorded with sleep-wake recording electrodes from 11:00 a.m. to 5:00 p.m. for 6 h. Rodents were generally tamed to freely moving polygraphic recording conditions. Although the 1st and 5th day of RGE treatment showed no effect on power densities in nonrapid eye movement (NREM) and rapid eye movement (REM) sleep, the 9th day of RGE administration showed augmented ${\alpha}$-wave (8.0 to 13.0 Hz) power densities in NREM and REM sleep. RGE increased total sleep and NREM sleep. The total percentage of wakefulness was only decreased on the 9th day, and the number of sleep-wake cycles was reduced after the repeated administration of RGE. Thus, the repeated administration of RGE increased NREM sleep in rats. The ${\alpha}$-wave activities in the cortical electroencephalograms were increased in sleep architecture by RGE. Moreover, the levels of both ${\alpha}$- and ${\beta}$-subunits of the ${\gamma}$-aminobutyric acid $(GABA)_A$ receptor were reduced in the hypothalamus of the RGE-treated groups. The level of glutamic acid decarboxylase was over-expressed in the hypothalamus. These results demonstrate that RGE increases NREM sleep via $GABA_A$ergic systems.

Intra-articular Injection of $IL-1{\beta}$ Facilitated Formalin-induced Temporomandibular Joint Pain in Freely Moving Rats

  • Choi, Hyo-Soon;Jung, Sung-Chul;Choi, Byung-Ju;Ahn, Dong-Kuk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.1
    • /
    • pp.23-27
    • /
    • 2005
  • The present study was performed to investigate the effects of intra-articular injection of interleukin-1${\beta}$ (IL-1${\beta}$) on the formalin-induced temporomandibular joint (TMJ) pain. Under anesthesia, a 30-gauge needle was introduced into the right TMJ region for injection of formalin. Microinjection of 50 ${\mu}l$ of 5% formalin significantly produced noxious scratching behavioral response, and the scratching behavior lasted for 40 min. Although the responses produced by formalin injection were divided into two phases, the response of 1st phase did not significantly differ from the scratching behavior response in the saline-treated group. We examined the effects of intra-articular injection of IL-1${\beta}$ on the number of noxious behavioral responses produced by 50${\mu}l$ of 5% formalin injection. Intra-articular injection of 100 pg and 1 ng of IL-1${\beta}$ significantly increased the number of behavioral responses of the 2nd phase, while 10 pg of IL-1${\beta}$ did not change the formalin-induced behavioral responses. To investigate whether IL-1 receptor was involved in the intra-articular administration of IL-1${\beta}$-induced hyperalgesic response, IL-1 receptor antagonist (IL- ra, 50 ng) was administrated together with IL-1${\beta}$ injection. IL-1${\beta}$ receptor antagonist blocked IL-1${\beta}$- induced hyperalgesic response in the TMJ formalin test. These results suggest that intra-articular injection of IL-1${\beta}$ facilitated the transmission of nociceptive information in the TMJ area.